Discover and publish cutting edge, open research.

Browse 37,056 multi-disciplinary research preprints

Featured documents

Michael Weekes

and 11 more

Nick K. Jones1,2*, Lucy Rivett1,2*, Chris Workman3, Mark Ferris3, Ashley Shaw1, Cambridge COVID-19 Collaboration1,4, Paul J. Lehner1,4, Rob Howes5, Giles Wright3, Nicholas J. Matheson1,4,6¶, Michael P. Weekes1,7¶1 Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK2 Clinical Microbiology & Public Health Laboratory, Public Health England, Cambridge, UK3 Occupational Health and Wellbeing, Cambridge Biomedical Campus, Cambridge, UK4 Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK5 Cambridge COVID-19 Testing Centre and AstraZeneca, Anne Mclaren Building, Cambridge, UK6 NHS Blood and Transplant, Cambridge, UK7 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK*Joint first authorship¶Joint last authorshipCorrespondence: mpw1001@cam.ac.ukThe UK has initiated mass COVID-19 immunisation, with healthcare workers (HCWs) given early priority because of the potential for workplace exposure and risk of onward transmission to patients. The UK’s Joint Committee on Vaccination and Immunisation has recommended maximising the number of people vaccinated with first doses at the expense of early booster vaccinations, based on single dose efficacy against symptomatic COVID-19 disease.1-3At the time of writing, three COVID-19 vaccines have been granted emergency use authorisation in the UK, including the BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech). A vital outstanding question is whether this vaccine prevents or promotes asymptomatic SARS-CoV-2 infection, rather than symptomatic COVID-19 disease, because sub-clinical infection following vaccination could continue to drive transmission. This is especially important because many UK HCWs have received this vaccine, and nosocomial COVID-19 infection has been a persistent problem.Through the implementation of a 24 h-turnaround PCR-based comprehensive HCW screening programme at Cambridge University Hospitals NHS Foundation Trust (CUHNFT), we previously demonstrated the frequent presence of pauci- and asymptomatic infection amongst HCWs during the UK’s first wave of the COVID-19 pandemic.4 Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and cycle threshold (Ct) values in the asymptomatic arm of our programme, which now offers weekly screening to all staff.Vaccination of HCWs at CUHNFT began on 8th December 2020, with mass vaccination from 8th January 2021. Here, we analyse data from the two weeks spanning 18thto 31st January 2021, during which: (a) the prevalence of COVID-19 amongst HCWs remained approximately constant; and (b) we screened comparable numbers of vaccinated and unvaccinated HCWs. Over this period, 4,408 (week 1) and 4,411 (week 2) PCR tests were performed from individuals reporting well to work. We stratified HCWs <12 days or > 12 days post-vaccination because this was the point at which protection against symptomatic infection began to appear in phase III clinical trial.226/3,252 (0·80%) tests from unvaccinated HCWs were positive (Ct<36), compared to 13/3,535 (0·37%) from HCWs <12 days post-vaccination and 4/1,989 (0·20%) tests from HCWs ≥12 days post-vaccination (p=0·023 and p=0·004, respectively; Fisher’s exact test, Figure). This suggests a four-fold decrease in the risk of asymptomatic SARS-CoV-2 infection amongst HCWs ≥12 days post-vaccination, compared to unvaccinated HCWs, with an intermediate effect amongst HCWs <12 days post-vaccination.A marked reduction in infections was also seen when analyses were repeated with: (a) inclusion of HCWs testing positive through both the symptomatic and asymptomatic arms of the programme (56/3,282 (1·71%) unvaccinated vs 8/1,997 (0·40%) ≥12 days post-vaccination, 4·3-fold reduction, p=0·00001); (b) inclusion of PCR tests which were positive at the limit of detection (Ct>36, 42/3,268 (1·29%) vs 15/2,000 (0·75%), 1·7-fold reduction, p=0·075); and (c) extension of the period of analysis to include six weeks from December 28th to February 7th 2021 (113/14,083 (0·80%) vs 5/4,872 (0·10%), 7·8-fold reduction, p=1x10-9). In addition, the median Ct value of positive tests showed a non-significant trend towards increase between unvaccinated HCWs and HCWs > 12 days post-vaccination (23·3 to 30·3, Figure), suggesting that samples from vaccinated individuals had lower viral loads.We therefore provide real-world evidence for a high level of protection against asymptomatic SARS-CoV-2 infection after a single dose of BNT162b2 vaccine, at a time of predominant transmission of the UK COVID-19 variant of concern 202012/01 (lineage B.1.1.7), and amongst a population with a relatively low frequency of prior infection (7.2% antibody positive).5This work was funded by a Wellcome Senior Clinical Research Fellowship to MPW (108070/Z/15/Z), a Wellcome Principal Research Fellowship to PJL (210688/Z/18/Z), and an MRC Clinician Scientist Fellowship (MR/P008801/1) and NHSBT workpackage (WPA15-02) to NJM. Funding was also received from Addenbrooke’s Charitable Trust and the Cambridge Biomedical Research Centre. We also acknowledge contributions from all staff at CUHNFT Occupational Health and Wellbeing and the Cambridge COVID-19 Testing Centre.

Guangming Wang

and 4 more

Tam Hunt

and 1 more

Tam Hunt [1], Jonathan SchoolerUniversity of California Santa Barbara Synchronization, harmonization, vibrations, or simply resonance in its most general sense seems to have an integral relationship with consciousness itself. One of the possible “neural correlates of consciousness” in mammalian brains is a combination of gamma, beta and theta synchrony. More broadly, we see similar kinds of resonance patterns in living and non-living structures of many types. What clues can resonance provide about the nature of consciousness more generally? This paper provides an overview of resonating structures in the fields of neuroscience, biology and physics and attempts to coalesce these data into a solution to what we see as the “easy part” of the Hard Problem, which is generally known as the “combination problem” or the “binding problem.” The combination problem asks: how do micro-conscious entities combine into a higher-level macro-consciousness? The proposed solution in the context of mammalian consciousness suggests that a shared resonance is what allows different parts of the brain to achieve a phase transition in the speed and bandwidth of information flows between the constituent parts. This phase transition allows for richer varieties of consciousness to arise, with the character and content of that consciousness in each moment determined by the particular set of constituent neurons. We also offer more general insights into the ontology of consciousness and suggest that consciousness manifests as a relatively smooth continuum of increasing richness in all physical processes, distinguishing our view from emergentist materialism. We refer to this approach as a (general) resonance theory of consciousness and offer some responses to Chalmers’ questions about the different kinds of “combination problem.”  At the heart of the universe is a steady, insistent beat: the sound of cycles in sync…. [T]hese feats of synchrony occur spontaneously, almost as if nature has an eerie yearning for order. Steven Strogatz, Sync: How Order Emerges From Chaos in the Universe, Nature and Daily Life (2003) If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.Nikola Tesla (1942) I.               Introduction Is there an “easy part” and a “hard part” to the Hard Problem of consciousness? In this paper, we suggest that there is. The harder part is arriving at a philosophical position with respect to the relationship of matter and mind. This paper is about the “easy part” of the Hard Problem but we address the “hard part” briefly in this introduction.  We have both arrived, after much deliberation, at the position of panpsychism or panexperientialism (all matter has at least some associated mind/experience and vice versa). This is the view that all things and processes have both mental and physical aspects. Matter and mind are two sides of the same coin.  Panpsychism is one of many possible approaches that addresses the “hard part” of the Hard Problem. We adopt this position for all the reasons various authors have listed (Chalmers 1996, Griffin 1997, Hunt 2011, Goff 2017). This first step is particularly powerful if we adopt the Whiteheadian version of panpsychism (Whitehead 1929).  Reaching a position on this fundamental question of how mind relates to matter must be based on a “weight of plausibility” approach, rather than on definitive evidence, because establishing definitive evidence with respect to the presence of mind/experience is difficult. We must generally rely on examining various “behavioral correlates of consciousness” in judging whether entities other than ourselves are conscious – even with respect to other humans—since the only consciousness we can know with certainty is our own. Positing that matter and mind are two sides of the same coin explains the problem of consciousness insofar as it avoids the problems of emergence because under this approach consciousness doesn’t emerge. Consciousness is, rather, always present, at some level, even in the simplest of processes, but it “complexifies” as matter complexifies, and vice versa. Consciousness starts very simple and becomes more complex and rich under the right conditions, which in our proposed framework rely on resonance mechanisms. Matter and mind are two sides of the coin. Neither is primary; they are coequal.  We acknowledge the challenges of adopting this perspective, but encourage readers to consider the many compelling reasons to consider it that are reviewed elsewhere (Chalmers 1996, Griffin 1998, Hunt 2011, Goff 2017, Schooler, Schooler, & Hunt, 2011; Schooler, 2015).  Taking a position on the overarching ontology is the first step in addressing the Hard Problem. But this leads to the related questions: at what level of organization does consciousness reside in any particular process? Is a rock conscious? A chair? An ant? A bacterium? Or are only the smaller constituents, such as atoms or molecules, of these entities conscious? And if there is some degree of consciousness even in atoms and molecules, as panpsychism suggests (albeit of a very rudimentary nature, an important point to remember), how do these micro-conscious entities combine into the higher-level and obvious consciousness we witness in entities like humans and other mammals?  This set of questions is known as the “combination problem,” another now-classic problem in the philosophy of mind, and is what we describe here as the “easy part” of the Hard Problem. Our characterization of this part of the problem as “easy”[2] is, of course, more than a little tongue in cheek. The authors have discussed frequently with each other what part of the Hard Problem should be labeled the easier part and which the harder part. Regardless of the labels we choose, however, this paper focuses on our suggested solution to the combination problem.  Various solutions to the combination problem have been proposed but none have gained widespread acceptance. This paper further elaborates a proposed solution to the combination problem that we first described in Hunt 2011 and Schooler, Hunt, and Schooler 2011. The proposed solution rests on the idea of resonance, a shared vibratory frequency, which can also be called synchrony or field coherence. We will generally use resonance and “sync,” short for synchrony, interchangeably in this paper. We describe the approach as a general resonance theory of consciousness or just “general resonance theory” (GRT). GRT is a field theory of consciousness wherein the various specific fields associated with matter and energy are the seat of conscious awareness.  A summary of our approach appears in Appendix 1.  All things in our universe are constantly in motion, in process. Even objects that appear to be stationary are in fact vibrating, oscillating, resonating, at specific frequencies. So all things are actually processes. Resonance is a specific type of motion, characterized by synchronized oscillation between two states.  An interesting phenomenon occurs when different vibrating processes come into proximity: they will often start vibrating together at the same frequency. They “sync up,” sometimes in ways that can seem mysterious, and allow for richer and faster information and energy flows (Figure 1 offers a schematic). Examining this phenomenon leads to potentially deep insights about the nature of consciousness in both the human/mammalian context but also at a deeper ontological level.

Susanne Schilling*^

and 9 more

Jessica mead

and 6 more

The construct of wellbeing has been criticised as a neoliberal construction of western individualism that ignores wider systemic issues including increasing burden of chronic disease, widening inequality, concerns over environmental degradation and anthropogenic climate change. While these criticisms overlook recent developments, there remains a need for biopsychosocial models that extend theoretical grounding beyond individual wellbeing, incorporating overlapping contextual issues relating to community and environment. Our first GENIAL model \cite{Kemp_2017} provided a more expansive view of pathways to longevity in the context of individual health and wellbeing, emphasising bidirectional links to positive social ties and the impact of sociocultural factors. In this paper, we build on these ideas and propose GENIAL 2.0, focusing on intersecting individual-community-environmental contributions to health and wellbeing, and laying an evidence-based, theoretical framework on which future research and innovative therapeutic innovations could be based. We suggest that our transdisciplinary model of wellbeing - focusing on individual, community and environmental contributions to personal wellbeing - will help to move the research field forward. In reconceptualising wellbeing, GENIAL 2.0 bridges the gap between psychological science and population health health systems, and presents opportunities for enhancing the health and wellbeing of people living with chronic conditions. Implications for future generations including the very survival of our species are discussed.  

Mark Ferris

and 14 more

IntroductionConsistent with World Health Organization (WHO) advice [1], UK Infection Protection Control guidance recommends that healthcare workers (HCWs) caring for patients with coronavirus disease 2019 (COVID-19) should use fluid resistant surgical masks type IIR (FRSMs) as respiratory protective equipment (RPE), unless aerosol generating procedures (AGPs) are being undertaken or are likely, when a filtering face piece 3 (FFP3) respirator should be used [2]. In a recent update, an FFP3 respirator is recommended if “an unacceptable risk of transmission remains following rigorous application of the hierarchy of control” [3]. Conversely, guidance from the Centers for Disease Control and Prevention (CDC) recommends that HCWs caring for patients with COVID-19 should use an N95 or higher level respirator [4]. WHO guidance suggests that a respirator, such as FFP3, may be used for HCWs in the absence of AGPs if availability or cost is not an issue [1].A recent systematic review undertaken for PHE concluded that: “patients with SARS-CoV-2 infection who are breathing, talking or coughing generate both respiratory droplets and aerosols, but FRSM (and where required, eye protection) are considered to provide adequate staff protection” [5]. Nevertheless, FFP3 respirators are more effective in preventing aerosol transmission than FRSMs, and observational data suggests that they may improve protection for HCWs [6]. It has therefore been suggested that respirators should be considered as a means of affording the best available protection [7], and some organisations have decided to provide FFP3 (or equivalent) respirators to HCWs caring for COVID-19 patients, despite a lack of mandate from local or national guidelines [8].Data from the HCW testing programme at Cambridge University Hospitals NHS Foundation Trust (CUHNFT) during the first wave of the UK severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic indicated a higher incidence of infection amongst HCWs caring for patients with COVID-19, compared with those who did not [9]. Subsequent studies have confirmed this observation [10, 11]. This disparity persisted at CUHNFT in December 2020, despite control measures consistent with PHE guidance and audits indicating good compliance. The CUHNFT infection control committee therefore implemented a change of RPE for staff on “red” (COVID-19) wards from FRSMs to FFP3 respirators. In this study, we analyse the incidence of SARS-CoV-2 infection in HCWs before and after this transition.

How it works

Upload or create your research work
You can upload Word, PDF, LaTeX as well as data, code, Jupyter Notebooks, videos, and figures. Or start a document from scratch.
Disseminate your research rapidly
Post your work as a preprint. A Digital Object Identifier (DOI) makes your research citeable and discoverable immediately.
Get published in a refereed journal
Track the status of your paper as it goes through peer review. When published, it automatically links to the publisher version.
Learn More

Most recent documents

Jordan Cuff

and 5 more

1. Generalist invertebrate predators are sensitive to weather conditions, but the relationship between their trophic interactions and weather is poorly understood. This study investigates how weather affects the identity and frequency of spider trophic interactions as mediated by prey community structure, web characteristics and density-independent prey choice. 2. Spiders and their locally available prey were collected from barley fields in Wales, UK from April to September 2017-2018. The gut contents of 300 spiders were screened using DNA metabarcoding, analysed via multivariate models, and compared against prey availability using null models. 3. Spiders' trophic interactions changed over time and with weather conditions, primarily related to concomitant changes in their prey communities. Spiders did, however, appear to mitigate the effects of structural changes in prey communities through changing prey preferences according to prevailing weather conditions, possibly facilitated by adaptive web construction. 4. Using these findings, we demonstrate that prey choice data collected under different weather conditions can be used to refine inter-annual predictions of spider trophic interactions, although prey abundance was secondary to diversity in driving the diet of these spiders. By improving our understanding of the interaction between trophic interactions and weather, we can better predict how ecological networks are likely to change in response to variation in weather conditions and, more urgently, global climate change.

Emily Wilson

and 5 more

Introduction The UK Medical Licensing Assessment (UKMLA) curriculum represents a consensus on core content including ENT-related content for newly qualified doctors. However, there is no similar consensus as to how ENT content should be taught at medical school. Design A virtual consensus forum was held at the 2nd East of England ENT Conference in April 2021 to ascertain views of medical students and junior doctors on how ENT should be taught at medical school. A syllabus of ENT-related items based on the UKMLA and GMC practical procedures curricula was divided into ‘Presentations’, ‘Conditions’ and ‘Practical Procedures’. 64 participants (27 students, 11 foundation doctors, and 7 other junior doctors) voted via anonymous polling for up to three of nine teaching methods they believed were best suited to teach each syllabus item. Results For ‘Presentations’, work-based/clinical-based learning and small-group seminars were significantly more popular than other methods, a further two were of middling popularity, and the remaining five (including simulation and e-learning) were significantly less popular. ‘Conditions’ results were near-identical, with work-based/clinical-based learning and small-group seminars significantly more popular than the remaining teaching methods. For ‘Practical procedures’ the three practical teaching methods were significantly more popular than the six theoretical methods. Conclusion Students and junior doctors express clear preference for clinical-based teaching and small-group seminars when learning ENT content. E-learning is poorly favoured, despite being increasingly used by medical schools and teaching bodies. Co-design of clinical training between students and educators may ensure training better matches students’ needs and expectations.

Liao LML

and 4 more

In view of the current situation in which the existing nondestructive testing (NDT) technology can hardly meet the demand of aluminum alloy electron beam weld defect detection, a weak magnetic NDT technology for aluminum alloy electron beam weld defects based on the geomagnetic field is proposed. Using the finite element analysis method, a simulation model of cracked aluminum alloy electron beam weld defects is established, the distribution characteristics of the magnetic field of cracked weld defects are determined, and the relationship between the defect size and the number of magnetic anomaly characteristics is analyzed. On this basis, a weak magnetic detection test was conducted on cracked aluminum alloy electron beam welds. First, the magnetic anomaly signal at the cracked weld was accurately extracted from the complex original magnetic induction intensity signal by using wavelet transform, and second, the least squares method was used to fit the curve to the crack depth h and the magnetic anomaly amplitude ∆B at the crack. The test results show that the magnetic induction intensity signal at the crack has obvious characteristics, and the wavelet transform can effectively extract and judge the weld crack signal from the weak magnetic detection signal and improve the defect identification rate. The crack amplitude ∆B is approximately positively correlated with the depth h in a certain range, consistent with the simulation analysis results. The feasibility of weak magnetic detection of cracks in aluminum alloy electron beam welds is verified by simulation and experimental analysis.

João Carvalho

and 4 more

Next-generation sequencing of pooled samples (Pool-seq) is a popular method to assess genome-wide diversity patterns in natural and experimental populations. However, Pool-seq is associated with specific sources of noise, such as unequal individual contributions. Consequently, using Pool-seq for the reconstruction of evolutionary history has remained underexplored. Here we describe a method to simulate Pool-seq data, implemented in an Approximate Bayesian Computation (ABC) framework to infer demographic history under models with two and four populations. By jointly modeling Pool-seq data, demographic history and the effects of selection due to barrier loci, we obtain estimates of demographic history parameters accounting for technical errors associated with Pool-seq. Rather than simulating genome-wide data, we perform ABC on subsets of loci, using relative summary statistics and parameter estimates. Our simulation study results indicate Pool-seq data allows distinction between general scenarios of ecotype formation (single versus parallel origin), and to infer relevant demographic parameters (e.g., effective sizes, split times). We exemplify the application of our method to Pool-seq data from the rocky-shore gastropod \textit{Littorina saxatilis}, sampled on a narrow geographical scale at two Swedish locations where two ecotypes (wave and crab) are found. Our model choice and parameter estimates show that ecotypes formed before colonization of the two locations (i.e., single origin) and are maintained despite gene flow. These results indicate that demographic modeling and inference can be successful based on pool-sequencing using ABC, contributing to the development of suitable null models that allow for a better understanding of the genetic basis of divergent adaptation.

Browse more recent preprints

Powerful features of Authorea

Under Review
Communities
Collections
Learn More
Journals connected to Under Review
Ecology and Evolution
Allergy
Clinical Case Reports
Land Degradation & Development
Mathematical Methods in the Applied Sciences
Biotechnology Journal
Plant, Cell & Environment
International Journal of Quantum Chemistry
PROTEINS: Structure, Function, and Bioinformatics
All IET journals
All AGU journals
All Wiley journals
READ ABOUT UNDER REVIEW
Featured Collection
READ ABOUT COLLECTIONS
Featured communities
Explore More Communities

Other benefits of Authorea

Multidisciplinary

A repository for any field of research, from Anthropology to Zoology

Comments

Discuss your preprints with your collaborators and the scientific community

Interactive Figures

Not just PDFs. You can publish d3.js and Plot.ly graphs, data, code, Jupyter notebooks

Documents recently accepted in scholarly journals

Browse more published preprints

Featured templates
Featured and interactive
Journals with direct submission
Explore All Templates