Discover and publish cutting edge, open research.

Browse 58,844 multi-disciplinary research preprints

Featured documents

Michael Weekes

and 11 more

Nick K. Jones1,2*, Lucy Rivett1,2*, Chris Workman3, Mark Ferris3, Ashley Shaw1, Cambridge COVID-19 Collaboration1,4, Paul J. Lehner1,4, Rob Howes5, Giles Wright3, Nicholas J. Matheson1,4,6¶, Michael P. Weekes1,7¶1 Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK2 Clinical Microbiology & Public Health Laboratory, Public Health England, Cambridge, UK3 Occupational Health and Wellbeing, Cambridge Biomedical Campus, Cambridge, UK4 Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK5 Cambridge COVID-19 Testing Centre and AstraZeneca, Anne Mclaren Building, Cambridge, UK6 NHS Blood and Transplant, Cambridge, UK7 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK*Joint first authorship¶Joint last authorshipCorrespondence: [email protected] UK has initiated mass COVID-19 immunisation, with healthcare workers (HCWs) given early priority because of the potential for workplace exposure and risk of onward transmission to patients. The UK’s Joint Committee on Vaccination and Immunisation has recommended maximising the number of people vaccinated with first doses at the expense of early booster vaccinations, based on single dose efficacy against symptomatic COVID-19 disease.1-3At the time of writing, three COVID-19 vaccines have been granted emergency use authorisation in the UK, including the BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech). A vital outstanding question is whether this vaccine prevents or promotes asymptomatic SARS-CoV-2 infection, rather than symptomatic COVID-19 disease, because sub-clinical infection following vaccination could continue to drive transmission. This is especially important because many UK HCWs have received this vaccine, and nosocomial COVID-19 infection has been a persistent problem.Through the implementation of a 24 h-turnaround PCR-based comprehensive HCW screening programme at Cambridge University Hospitals NHS Foundation Trust (CUHNFT), we previously demonstrated the frequent presence of pauci- and asymptomatic infection amongst HCWs during the UK’s first wave of the COVID-19 pandemic.4 Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and cycle threshold (Ct) values in the asymptomatic arm of our programme, which now offers weekly screening to all staff.Vaccination of HCWs at CUHNFT began on 8th December 2020, with mass vaccination from 8th January 2021. Here, we analyse data from the two weeks spanning 18thto 31st January 2021, during which: (a) the prevalence of COVID-19 amongst HCWs remained approximately constant; and (b) we screened comparable numbers of vaccinated and unvaccinated HCWs. Over this period, 4,408 (week 1) and 4,411 (week 2) PCR tests were performed from individuals reporting well to work. We stratified HCWs <12 days or > 12 days post-vaccination because this was the point at which protection against symptomatic infection began to appear in phase III clinical trial.226/3,252 (0·80%) tests from unvaccinated HCWs were positive (Ct<36), compared to 13/3,535 (0·37%) from HCWs <12 days post-vaccination and 4/1,989 (0·20%) tests from HCWs ≥12 days post-vaccination (p=0·023 and p=0·004, respectively; Fisher’s exact test, Figure). This suggests a four-fold decrease in the risk of asymptomatic SARS-CoV-2 infection amongst HCWs ≥12 days post-vaccination, compared to unvaccinated HCWs, with an intermediate effect amongst HCWs <12 days post-vaccination.A marked reduction in infections was also seen when analyses were repeated with: (a) inclusion of HCWs testing positive through both the symptomatic and asymptomatic arms of the programme (56/3,282 (1·71%) unvaccinated vs 8/1,997 (0·40%) ≥12 days post-vaccination, 4·3-fold reduction, p=0·00001); (b) inclusion of PCR tests which were positive at the limit of detection (Ct>36, 42/3,268 (1·29%) vs 15/2,000 (0·75%), 1·7-fold reduction, p=0·075); and (c) extension of the period of analysis to include six weeks from December 28th to February 7th 2021 (113/14,083 (0·80%) vs 5/4,872 (0·10%), 7·8-fold reduction, p=1x10-9). In addition, the median Ct value of positive tests showed a non-significant trend towards increase between unvaccinated HCWs and HCWs > 12 days post-vaccination (23·3 to 30·3, Figure), suggesting that samples from vaccinated individuals had lower viral loads.We therefore provide real-world evidence for a high level of protection against asymptomatic SARS-CoV-2 infection after a single dose of BNT162b2 vaccine, at a time of predominant transmission of the UK COVID-19 variant of concern 202012/01 (lineage B.1.1.7), and amongst a population with a relatively low frequency of prior infection (7.2% antibody positive).5This work was funded by a Wellcome Senior Clinical Research Fellowship to MPW (108070/Z/15/Z), a Wellcome Principal Research Fellowship to PJL (210688/Z/18/Z), and an MRC Clinician Scientist Fellowship (MR/P008801/1) and NHSBT workpackage (WPA15-02) to NJM. Funding was also received from Addenbrooke’s Charitable Trust and the Cambridge Biomedical Research Centre. We also acknowledge contributions from all staff at CUHNFT Occupational Health and Wellbeing and the Cambridge COVID-19 Testing Centre.

Guangming Wang

and 4 more

Tam Hunt

and 1 more

Tam Hunt [1], Jonathan SchoolerUniversity of California Santa Barbara Synchronization, harmonization, vibrations, or simply resonance in its most general sense seems to have an integral relationship with consciousness itself. One of the possible “neural correlates of consciousness” in mammalian brains is a combination of gamma, beta and theta synchrony. More broadly, we see similar kinds of resonance patterns in living and non-living structures of many types. What clues can resonance provide about the nature of consciousness more generally? This paper provides an overview of resonating structures in the fields of neuroscience, biology and physics and attempts to coalesce these data into a solution to what we see as the “easy part” of the Hard Problem, which is generally known as the “combination problem” or the “binding problem.” The combination problem asks: how do micro-conscious entities combine into a higher-level macro-consciousness? The proposed solution in the context of mammalian consciousness suggests that a shared resonance is what allows different parts of the brain to achieve a phase transition in the speed and bandwidth of information flows between the constituent parts. This phase transition allows for richer varieties of consciousness to arise, with the character and content of that consciousness in each moment determined by the particular set of constituent neurons. We also offer more general insights into the ontology of consciousness and suggest that consciousness manifests as a relatively smooth continuum of increasing richness in all physical processes, distinguishing our view from emergentist materialism. We refer to this approach as a (general) resonance theory of consciousness and offer some responses to Chalmers’ questions about the different kinds of “combination problem.”  At the heart of the universe is a steady, insistent beat: the sound of cycles in sync…. [T]hese feats of synchrony occur spontaneously, almost as if nature has an eerie yearning for order. Steven Strogatz, Sync: How Order Emerges From Chaos in the Universe, Nature and Daily Life (2003) If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.Nikola Tesla (1942) I.               Introduction Is there an “easy part” and a “hard part” to the Hard Problem of consciousness? In this paper, we suggest that there is. The harder part is arriving at a philosophical position with respect to the relationship of matter and mind. This paper is about the “easy part” of the Hard Problem but we address the “hard part” briefly in this introduction.  We have both arrived, after much deliberation, at the position of panpsychism or panexperientialism (all matter has at least some associated mind/experience and vice versa). This is the view that all things and processes have both mental and physical aspects. Matter and mind are two sides of the same coin.  Panpsychism is one of many possible approaches that addresses the “hard part” of the Hard Problem. We adopt this position for all the reasons various authors have listed (Chalmers 1996, Griffin 1997, Hunt 2011, Goff 2017). This first step is particularly powerful if we adopt the Whiteheadian version of panpsychism (Whitehead 1929).  Reaching a position on this fundamental question of how mind relates to matter must be based on a “weight of plausibility” approach, rather than on definitive evidence, because establishing definitive evidence with respect to the presence of mind/experience is difficult. We must generally rely on examining various “behavioral correlates of consciousness” in judging whether entities other than ourselves are conscious – even with respect to other humans—since the only consciousness we can know with certainty is our own. Positing that matter and mind are two sides of the same coin explains the problem of consciousness insofar as it avoids the problems of emergence because under this approach consciousness doesn’t emerge. Consciousness is, rather, always present, at some level, even in the simplest of processes, but it “complexifies” as matter complexifies, and vice versa. Consciousness starts very simple and becomes more complex and rich under the right conditions, which in our proposed framework rely on resonance mechanisms. Matter and mind are two sides of the coin. Neither is primary; they are coequal.  We acknowledge the challenges of adopting this perspective, but encourage readers to consider the many compelling reasons to consider it that are reviewed elsewhere (Chalmers 1996, Griffin 1998, Hunt 2011, Goff 2017, Schooler, Schooler, & Hunt, 2011; Schooler, 2015).  Taking a position on the overarching ontology is the first step in addressing the Hard Problem. But this leads to the related questions: at what level of organization does consciousness reside in any particular process? Is a rock conscious? A chair? An ant? A bacterium? Or are only the smaller constituents, such as atoms or molecules, of these entities conscious? And if there is some degree of consciousness even in atoms and molecules, as panpsychism suggests (albeit of a very rudimentary nature, an important point to remember), how do these micro-conscious entities combine into the higher-level and obvious consciousness we witness in entities like humans and other mammals?  This set of questions is known as the “combination problem,” another now-classic problem in the philosophy of mind, and is what we describe here as the “easy part” of the Hard Problem. Our characterization of this part of the problem as “easy”[2] is, of course, more than a little tongue in cheek. The authors have discussed frequently with each other what part of the Hard Problem should be labeled the easier part and which the harder part. Regardless of the labels we choose, however, this paper focuses on our suggested solution to the combination problem.  Various solutions to the combination problem have been proposed but none have gained widespread acceptance. This paper further elaborates a proposed solution to the combination problem that we first described in Hunt 2011 and Schooler, Hunt, and Schooler 2011. The proposed solution rests on the idea of resonance, a shared vibratory frequency, which can also be called synchrony or field coherence. We will generally use resonance and “sync,” short for synchrony, interchangeably in this paper. We describe the approach as a general resonance theory of consciousness or just “general resonance theory” (GRT). GRT is a field theory of consciousness wherein the various specific fields associated with matter and energy are the seat of conscious awareness.  A summary of our approach appears in Appendix 1.  All things in our universe are constantly in motion, in process. Even objects that appear to be stationary are in fact vibrating, oscillating, resonating, at specific frequencies. So all things are actually processes. Resonance is a specific type of motion, characterized by synchronized oscillation between two states.  An interesting phenomenon occurs when different vibrating processes come into proximity: they will often start vibrating together at the same frequency. They “sync up,” sometimes in ways that can seem mysterious, and allow for richer and faster information and energy flows (Figure 1 offers a schematic). Examining this phenomenon leads to potentially deep insights about the nature of consciousness in both the human/mammalian context but also at a deeper ontological level.

Susanne Schilling*^

and 9 more

Jessica mead

and 6 more

The construct of wellbeing has been criticised as a neoliberal construction of western individualism that ignores wider systemic issues including increasing burden of chronic disease, widening inequality, concerns over environmental degradation and anthropogenic climate change. While these criticisms overlook recent developments, there remains a need for biopsychosocial models that extend theoretical grounding beyond individual wellbeing, incorporating overlapping contextual issues relating to community and environment. Our first GENIAL model \cite{Kemp_2017} provided a more expansive view of pathways to longevity in the context of individual health and wellbeing, emphasising bidirectional links to positive social ties and the impact of sociocultural factors. In this paper, we build on these ideas and propose GENIAL 2.0, focusing on intersecting individual-community-environmental contributions to health and wellbeing, and laying an evidence-based, theoretical framework on which future research and innovative therapeutic innovations could be based. We suggest that our transdisciplinary model of wellbeing - focusing on individual, community and environmental contributions to personal wellbeing - will help to move the research field forward. In reconceptualising wellbeing, GENIAL 2.0 bridges the gap between psychological science and population health health systems, and presents opportunities for enhancing the health and wellbeing of people living with chronic conditions. Implications for future generations including the very survival of our species are discussed.  

Mark Ferris

and 14 more

IntroductionConsistent with World Health Organization (WHO) advice [1], UK Infection Protection Control guidance recommends that healthcare workers (HCWs) caring for patients with coronavirus disease 2019 (COVID-19) should use fluid resistant surgical masks type IIR (FRSMs) as respiratory protective equipment (RPE), unless aerosol generating procedures (AGPs) are being undertaken or are likely, when a filtering face piece 3 (FFP3) respirator should be used [2]. In a recent update, an FFP3 respirator is recommended if “an unacceptable risk of transmission remains following rigorous application of the hierarchy of control” [3]. Conversely, guidance from the Centers for Disease Control and Prevention (CDC) recommends that HCWs caring for patients with COVID-19 should use an N95 or higher level respirator [4]. WHO guidance suggests that a respirator, such as FFP3, may be used for HCWs in the absence of AGPs if availability or cost is not an issue [1].A recent systematic review undertaken for PHE concluded that: “patients with SARS-CoV-2 infection who are breathing, talking or coughing generate both respiratory droplets and aerosols, but FRSM (and where required, eye protection) are considered to provide adequate staff protection” [5]. Nevertheless, FFP3 respirators are more effective in preventing aerosol transmission than FRSMs, and observational data suggests that they may improve protection for HCWs [6]. It has therefore been suggested that respirators should be considered as a means of affording the best available protection [7], and some organisations have decided to provide FFP3 (or equivalent) respirators to HCWs caring for COVID-19 patients, despite a lack of mandate from local or national guidelines [8].Data from the HCW testing programme at Cambridge University Hospitals NHS Foundation Trust (CUHNFT) during the first wave of the UK severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic indicated a higher incidence of infection amongst HCWs caring for patients with COVID-19, compared with those who did not [9]. Subsequent studies have confirmed this observation [10, 11]. This disparity persisted at CUHNFT in December 2020, despite control measures consistent with PHE guidance and audits indicating good compliance. The CUHNFT infection control committee therefore implemented a change of RPE for staff on “red” (COVID-19) wards from FRSMs to FFP3 respirators. In this study, we analyse the incidence of SARS-CoV-2 infection in HCWs before and after this transition.

How it works

Upload or create your research work
You can upload Word, PDF, LaTeX as well as data, code, Jupyter Notebooks, videos, and figures. Or start a document from scratch.
Disseminate your research rapidly
Post your work as a preprint. A Digital Object Identifier (DOI) makes your research citeable and discoverable immediately.
Get published in a refereed journal
Track the status of your paper as it goes through peer review. When published, it automatically links to the publisher version.
Learn More

Most recent documents

Noah Day

and 4 more

Stephen D. Winn

and 2 more

Starting from the fully-compressible Euler equations, a two-way-coupled system governing the long-wave behaviour of thin layers (with respect to the radius of Earth) representing the ocean and atmosphere, under an isentropic constraint, was derived. This approach incorporates bathymetry and topographic features as well as three-dimensional atmospheric non-uniformities through their depth-average over a spherical shell. Linear analysis of the obtained system yields two pairs of gravito-acoustic waves which are found to be representative of the fast-travelling atmospheric wave (with a propagation speed mainly governed by the atmospheric-layer-averaged speed of sound) and the slower-travelling gravity waves in the ocean (with a propagation speed mainly governed by local water depth). Remarkably, the 'Proudman resonance', observed in the forced shallow-water equation framework and invoked to justify, in part, observed large wave-heights, vanishes in favour of a continuous transition past the critical water depth, occurring when the two wave propagation speeds are closest. Two-dimensional non-linear global simulations were performed, using atmospheric conditions on the day, showcasing the predictive ability of the model. Local maxima of water-height disturbance in the farfield from the volcano, linked to the atmospheric wave deformation over time, are observed, emphasising the importance of the atmospheric-layer modelling and two-way coupling for any daylong predictions. An efficient implementation of the modelling strategy was carried out in the open source computational framework dNami to demonstrate the ability to perform faster-than-real-time simulations despite the additional equations in the governing system. Future work would see the strategy extended to incorporate additional layers and physics e.g. ocean and atmosphere stratification, interaction with the upper atmosphere.

Madeleine Ostwald

and 5 more

IntroductionInferring generalizable patterns in species dynamics, distributions, and functional variation are central aims of ecology and evolutionary biology (MacArthur, 1972). Trait-based approaches, which quantify phenotypic characteristics that impact organisms’ fitness and/or functional role, provide a tractable comparative framework for understanding communities, ecosystems, and evolutionary processes (Mcgill et al., 2006; Violle et al., 2007). Functional trait studies have proliferated over the past two decades, addressing foundational questions in community ecology (Cadotte et al., 2015; Mcgill et al., 2006; Violle and Jiang, 2009), biogeography (Violle et al., 2014), and conservation biology (Cadotte et al., 2011; Wellnitz and Poff, 2001) across taxonomic groups. These works emphasize the promise of trait-based research for generating novel insights into central ecological concepts and theories.Increasingly, bee researchers are recognizing the utility of trait-based approaches for a wide variety of applications in ecological research. Bees (Hymenoptera: Apoidea: Anthophila) represent more than 20,000 species worldwide and display dramatic interspecific variation in morphology and behavior (Figure 1), including traits that mediate pollination services and responses to global environmental change (Supplementary Table 1). Exploration of functional traits has long been a cornerstone of bee research, yet only recently have these traits been systematically applied in bee ecological studies as a comparative framework for understanding community-level processes. Given their major functional role as the primary animal pollinators of terrestrial ecosystems (Ollerton et al., 2011), the bees represent a group ripe for exploration through a functional ecological lens.Here, we review an emerging body of literature that quantifies functional traits across bee communities to address questions in bee ecology. In doing so, we address the following questions: How have functional traits been used to study bee ecology? What have been the major outcomes and limitations in bee functional trait research? How might this framework be leveraged to address urgent questions in the study of global bee declines? We review the variety of methods used to quantify bee trait variation, highlight common methodological problems and inconsistencies, and recommend best practices. Additionally, we describe geographic, taxonomic, and trait biases across the body of bee functional trait work, and highlight research areas that merit particular attention in future studies. Finally, we emphasize the value of open trait data sharing, and propose a roadmap toward a global bee functional trait database, including an initial aggregated dataset of 3369 morphological measurements from 1209 bee species.
Marine Ecosystem Models (MEMs) are increasingly forced with Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyse the effects of alternative management efforts for marine ecosystems under potential scenarios of global change. However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a time span widely used in the global climate modelling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low-tech and freely available technologies to enable the systematic execution and analysis of linked ESM / MEM prediction ensembles. We apply this framework on the seasonal-to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialised decadal Earth System Model predictions affects a mechanistic and spatiotemporal explicit global MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM predictability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modelling group with the fundamental capabilities to operationalize marine ecosystem modelling.
Mantle convection plays a fundamental role in driving evolution of oceanic and continental lithosphere. In turn it impacts a broad suite of processes operating at or close to Earth’s surface including landscape evolution, glacio-eustasy, magmatism and climate. A variety of theoretical approaches now exist to simulate mantle convection. Outputs from such simulations are being used to parameterise models of landscape evolution and basin formation. However, the substantial body of existing simulations has generated a variety of conflicting views on the history of dynamic topography, its evolution and key parameters for modelling mantle flow. The focus of this study is on developing strategies to use large-scale quantitative stratigraphic observations to asses model predictions and identify simulation parameters that generate realistic predictions of Earth surface evolution. Spot measurements of uplift or subsidence provide useful target observations but are often controlled by tectonic processes, yet avoiding areas where tectonics have influenced vertical motions is challenging. To address this issue, we use large inventories of stratigraphic data from across North America with contextual geophysical and geodetic data to constrain the regional uplift and subsidence history. We demonstrate that a suite of fairly typical simulations struggle to match the amplitude, polarity and timing of observed vertical motions. Building on recent seismological advances, we then explore strategies for understanding patterns of continental uplift and subsidence that incorporate (and test) predicted evolution of the lithosphere, asthenosphere and deep mantle. Our results demonstrate the importance of contributions from the uppermost mantle in driving vertical motions of continental interiors.

Browse more recent preprints

Powerful features of Authorea

Under Review
Communities
Collections
Learn More
Journals connected to Under Review
Ecology and Evolution
Allergy
Clinical Case Reports
Land Degradation & Development
Mathematical Methods in the Applied Sciences
Biotechnology Journal
Plant, Cell & Environment
International Journal of Quantum Chemistry
PROTEINS: Structure, Function, and Bioinformatics
All IET journals
All AGU journals
All Wiley journals
READ ABOUT UNDER REVIEW
Featured Collection
READ ABOUT COLLECTIONS
Featured communities
Explore More Communities

Other benefits of Authorea

Multidisciplinary

A repository for any field of research, from Anthropology to Zoology

Comments

Discuss your preprints with your collaborators and the scientific community

Interactive Figures

Not just PDFs. You can publish d3.js and Plot.ly graphs, data, code, Jupyter notebooks

Documents recently accepted in scholarly journals

The profound association between music and human emotion has transcended epochs, underscoring the capacity of musical compositions to elicit a spectrum of feelings, from exuberance to introspection. In the contemporary landscape, the intersection of music and technological advancements has engendered a paradigmatic shift in the creation and interpretation of musical compositions. Central to this transformation is the integration of artificial intelligence (AI) into the realm of music composition, a domain historically governed by human creativity. This research endeavors to navigate this juncture, unraveling the prospect of imbuing AI-generated music with heightened emotional resonance, thereby amplifying the scope of artistic expression. At the crux of this exploration lies the innovative utilization of Generative Adversarial Networks (GANs) to infuse the synthesized musical compositions with an intricate tapestry of human-like emotions. This paper sets out to elucidate the multifaceted dimensions of this venture by charting a trajectory that traverses the historical lineage of emotional undertones in music, culminating in a contemporary synergy between AI capabilities and human sentiment. Our approach is encapsulated within the nexus of technology and creativity, where GANs are envisaged as a conduit to facilitate the infusion of emotions into AI-generated musical compositions. In subsequent sections, we delve into an immersive analysis of the seminal role that music has played in articulating emotions throughout history. Moreover, we embark on a comprehensive exploration of the confluence of AI advancements and the nuanced realm of emotional resonance, delineating the profound possibilities that emerge from this amalgamation. Crucially, the research postulates a novel framework that leverages GANs to imbue AI-generated harmonies with a poignant emotional depth, elucidating the pivotal role of technology in elevating the emotive tenor of musical compositions. The subsequent chapters unravel the intricate methodology underpinning this research, encapsulating data collection processes, GAN architecture elucidation, techniques for embedding emotional facets, and the meticulous training process. Furthermore, a meticulous analysis of the emotional impact of AI-generated music on human perception is presented, both quantitatively and qualitatively, shedding light on the efficacy of the GAN-powered approach. Conclusively, the research extends its purview to expound upon the ethical considerations embedded within this paradigmatic juncture, while also envisioning potential trajectories for the practical application and validation of the proposed GAN-powered methodology. As the curtains are drawn on this introductory exposition, the subsequent sections promise a symphony of insights, culminating in a harmonious synthesis of AI ingenuity and human emotional resonance within the tapestry of musical composition.

Xiangkun He

and 6 more

Ensuring safety and achieving human-level driving performance remain challenges for autonomous vehicles, especially in safety-critical situations. As a key component of artificial intelligence, reinforcement learning is promising and has shown great potential in many complex tasks; however, its lack of safety guarantees limits its real-world applicability. Hence, further advancing reinforcement learning, especially from the safety perspective, is of great importance for autonomous driving. As revealed by cognitive neuroscientists, the amygdala of the brain can elicit defensive responses against threats or hazards, which is crucial for survival in and adaptation to risky environments. Drawing inspiration from this scientific discovery, we present a fear-neuro-inspired reinforcement learning framework to realize safe autonomous driving through modeling the amygdala functionality. This new technique facilitates an agent to learn defensive behaviors and achieve safe decision making with fewer safety violations. Through experimental tests, we show that the proposed approach enables the autonomous driving agent to attain state-of-the-art performance compared to the baseline agents and perform comparably to 30 certified human drivers, across various safety-critical scenarios. The results demonstrate the feasibility and effectiveness of our framework while also shedding light on the crucial role of simulating the amygdala function in the application of reinforcement learning to safety-critical autonomous driving domains.

Petar radanliev

and 2 more

In the contemporary digital age, Quantum Computing and Artificial Intelligence (AI) convergence is reshaping the cyber landscape, introducing both unprecedented opportunities and potential vulnerabilities. This research, conducted over five years, delves into the cybersecurity implications of this convergence, with a particular focus on AI/Natural Language Processing (NLP) models and quantum cryptographic protocols, notably the BB84 method and specific NIST-approved algorithms. Utilising Python and C++ as primary computational tools, the study employs a “red teaming” approach, simulating potential cyber-attacks to assess the robustness of quantum security measures. Preliminary research over 12 months laid the groundwork, which this study seeks to expand upon, aiming to translate theoretical insights into actionable, real-world cybersecurity solutions. Located at the University of Oxford’s technology precinct, the research benefits from state-of-the-art infrastructure and a rich collaborative environment. The study’s overarching goal is to ensure that as the digital world transitions to quantum-enhanced operations, it remains resilient against AI-driven cyber threats. The research aims to foster a safer, quantum-ready digital future through iterative testing, feedback integration, and continuous improvement. The findings are intended for broad dissemination, ensuring that the knowledge benefits academia and the global community, emphasising the responsible and secure harnessing of quantum technology.

Browse more published preprints

Featured templates
Featured and interactive
Journals with direct submission
Explore All Templates