Discover and publish cutting edge, open research.

Browse 23,813 multi-disciplinary research preprints

Most recent

Nathanael Yong

and 8 more

Background: Cervical cancer affects 3,197 women in the UK, and 604000 women worldwide annually, with peak incidence seen between 30-34 years of age. For many, fertility-sparing surgery is an appealing option where possible. However, absence of large-scale data, along with a notable variation in reported outcomes in relevant studies may undermine future efforts for consistent evidence synthesis. Objectives: To systematically review the reported outcomes measured in studies that include women who underwent fertility-sparing surgery for cervical cancer and identify whether variation exists. Search Strategy: We searched MEDLINE, EMBASE, and CENTRAL from inception to February 2019. Selection Criteria: Randomised controlled trials, cohort and observational studies, and case studies of more than 10 participants from January 1990 to date. Data Collection and Analysis: Study characteristics and all reported treatment outcomes. Main results: 104 studies with a sum of 9535 participants were identified. Most studies reported on oncological outcomes (97/104), followed by fertility and pregnancy (86/104), post-operative complications (74/104), intra-operative complications (72/104), and quality of life (5). There were huge variation and heterogeneity in reported outcomes, with only 12% being good quality and 87% being of poor quality. Conclusions: There is significant heterogeneity in the reported outcomes. An agreed Core Outcome Set (COS) is necessary for future studies to effectively harmonise reported outcomes that are measurable and relevant to patients, clinicians, and researchers. This systematic review sets the groundwork for the development of a COS for fertility sparing surgery in cervical cancer. Funding: British Medical Association’s Strutt and Harper Grant.

Haroon Rashid

and 3 more

Purpose: Anti-seizure medications (ASMs) are associated with a variety of adverse events (AEs) that have a significant detrimental impact on quality of life and treatment adherence. The aim of the study was to identify and quantify the AEs of ASMs in persons with epilepsy (PWE) using Liverpool Adverse Events Profile (LAEP), and to determine the feasibility of LAEP for predicting depression in PWE. Methods: After ethical clearance, 309 PWE above 18 years of age, on ASMs, attending epilepsy clinic in neurology outpatient department of All India Institute of Medical Sciences, New Delhi, India, were recruited and evaluated for depression using different assessment tools, and LAEP screening tool was used for adverse event profiling. Results: The mean LAEP scores in PWE were 28.2±6.2 and ranged from 19 to 49. Only 16 PWE had LAEP score ≥45 i.e. had high toxicity. Phenytoin had the highest LEAP score, followed by carbamazepine, levetiracetam, and sodium valproate. As compared to monotherapy, PWE on polytherapy had higher LAEP score (26.7±5.9 vs. 29.03±6.3; p=0.0013). Subjects positive for depression had significantly higher LAEP score than PWE without depression (33.5±6.2 vs. 24.7±3.1; p<0.0001). A strong positive correlation of the LAEP score was observed with depression scores as assessed by different assessment tools, and a LAEP score of ≥28 was recommended to screen PWE for depression. Conclusion: The systematic use of LAEP in epilepsy outpatient settings will allow for better detection and management of ASM’s adverse effects, as well as the identification of PWE at risk of depression.
The Three-Rivers Headwaters Region (TRHR) is crucial to the sustainable development of China and Southeast Asian countries. For various reasons, the sustainability of grassland ecosystems in the region has been seriously challenged. This paper reviews remote sensing-based monitoring and simulation of TRHR grassland ecosystems; quantitative assessment of grassland degradation and its ecological effects; driving factors and mechanisms of grassland degradation; grassland conservation policies and restoration for degraded grassland. The review shows that although TRHR alpine grassland coverage and above-ground biomass of alpine grassland (AG-AGB) have generally increased over the past 30 years, the degradation has not been fundamentally curbed. Grassland degradation significantly reduced the surface soil nutrients and affected their distribution, and also aggravated soil erosion and deteriorated soil moisture conditions. Grassland degradation leads to loss of productivity and species diversity. Its adverse impact on production will reduce the well-being of pastoralists. The “warm and wet” trend of the TRHR climate promotes the restoration of alpine grasslands, but the widespread overgrazing is considered to be the main reason for grassland degradation. However, the two have very complex impacts on grassland, and further research is needed. Since 2000, the TRHR grassland restoration policy has achieved great results, but the formulation of the policy still needs to effectively integrate the market logic and strengthen the understanding of the relationship between ecological protection and cultural protection. In addition, appropriate human intervention mechanisms are urgently needed for the uncertainty of future climate change. It is recommended to implement technologies such as rodent control, light grazing, enclosure, weeding, and fertilization to restore slightly and moderately degraded grasslands. However, for the severely degraded “black soil beach”, it needs to be restored by artificial seeding, and the stability of the plant-soil system needs to be emphasized to establish a relatively stable community to prevent secondary degradation.

Gurkaran Johal

and 7 more

Background: As transcatheter aortic valve replacement (TAVR) procedures become more widely available, there is a growing need to monitor and evaluate postoperative outcomes accurately. The energy loss index (ELI) of the ascending aorta has been commonly used to examine the agreement between the echocardiographic and Gorlin measurement of the aortic valve area. Objectives: This project aims to demonstrate a link between ELI values and mortality following implanted TAVR valves and determine an ELI cutoff value associated with post-TAVR events. Method: We retrospectively reviewed patients undergoing TAVR from 2012 – 2017. We calculated ELI values for patients immediately postoperative after a TAVR procedure. Using Receiver-Operator Characteristic and Cox Regression analyses, we identified a cutoff value to distinguish between high and low-risk patients. Results: This study showed ELI ≤ 1.34 (hazard ratio, 1.783; 95% confidence interval 1.231-2.583, p=0.002) as representative of patients with a high risk of mortality post-TAVR. Additionally, post-TAVR, ejection fraction increased by 3.5 percent (p<0.001), and the aortic valve effective orifice area increased by 1.25 cm squared (p<0.001) while the mean transvalvular gradient decreased by 33.6 mmHg (p<0.001) and the peak transvalvular gradient decreased by 49.7 mmHg (p<0.001). Conclusion: ELI is an additional prognostic factor that should be considered during risk assessment before TAVR. This study shows that patients with ELI ≤ 1.34 had decreased cumulative survival post-TAVR. These patients had a fivefold increased risk of death following TAVR.

Browse more recent preprints

Recently published in scholarly journals

Omar Sharaf

and 4 more

Background: Dysphagia following cardiac surgery is common and associated with adverse outcomes. Among patients receiving left ventricular assist device (LVAD), we evaluated the impact of fiberoptic endoscopic evaluation of swallowing (FEES) on outcomes. Methods: A single-center pilot study was conducted in adults (≥18 years of age) undergoing durable LVAD (February 2019-January 2020). Six patients were prospectively enrolled, evaluated, and underwent FEES within 72 hours of extubation—they were compared to 12 control patients. Demographic, surgical, and postoperative outcomes were collected. Unpaired two-sided t-tests and Fisher’s Exact tests were performed. Results: Baseline characteristics were similar between groups. Intraoperative criteria including duration of transesophageal echo (314 ± 86 min) and surgery (301 ± 74 min) did not differ. Mean time of intubation was comparable (57.3 vs. 68.7 hours, p=0.77). In the entire cohort, 30-day, 1-year, 2-year, and 3-year mortality were 0%, 5.6%, 5.6%, and 16.7%, respectively. Sixty-seven percent of the patients that underwent FEES had inefficient swallowing function. The FEES group trended to a shorter hospital length of stay (LOS) (29.1 vs. 46.6 days, p=0.098), post-implantation LOS (25.3 vs 30.7 days, p=0.46), and lower incidence of postoperative pneumonia (16.7% vs. 50%, p=0.32) and sepsis (0% vs. 33.3%, p=0.25). Conclusions: FEES did not impact 30-day, 1-year, 2-year, or 3-year mortality. Patients who underwent FEES trended toward shorter LOS, and lower postoperative pneumonia and sepsis rates, though not statistically significant. A higher incidence of dysphagia among patients undergoing FEES despite comparable baseline risk factors with controls suggests FEES may detect subclinical dysphagia.

Joshua Sink

and 1 more

Employing New Criteria for Confirmation of Conduction Pacing – Achieving True Left Bundle Branch Pacing May Be Harder Than Meets the EyeJoshua Sink, MD1, Nishant Verma, MD, MPH2Northwestern University, Feinberg School of Medicine, Department of Internal MedicineNorthwestern University, Feinberg School of Medicine, Division of CardiologyCorresponding Author:Nishant Verma, MD, MPH251 East Huron Street, Feinberg 8-503Chicago, IL 60611312-926-2148Nishant.Verma@nm.orgFunding: NoneDisclosures: Dr. Sink has nothing to disclose. Dr. Verma receives speaker honoraria from Medtronic, Biotronik and Baylis Medical and consulting fees from Boston Scientific, Biosense Webster, AltaThera Pharmaceuticals and Knowledge 2 Practice.Word Count: 1200In recent years, conduction system pacing (CSP) has garnered significant attention from the electrophysiology (EP) community. This movement has been driven by the hypothesis that using the natural conduction system activation is desirable and clinically beneficial in patients with advanced conduction disease and ventricular desynchrony. Permanent His-bundle pacing (PHBP) is generally seen as the purest form of conduction system activation. (Figure 1) PHBP was first described over 20 years ago but the idea has attracted substantial investigative effort in recent years. When successfully achieved, His bundle pacing has been associated with reduction in mortality, reduction in heart failure (HF) admissions, and improvement in left ventricular (LV) function compared to right ventricular (RV) pacing.1 Despite this, consistent achievability in real-world practice remains limited due to a variety of factors including narrow anatomic targetability, lead stability, high pacing thresholds, low ventricular sensing, and inability to correct the QRS in bundle branch block.2Thus, while waiting for the next iteration of improved delivery techniques, pacing leads and programming algorithms,, alternative methods of conductive system pacing have emerged, with the potential to surmount the challenges described.Left bundle branch pacing (LBBP) has recently emerged as an alternative method of CSP. The technique was first described by Huang et al. in 2017 and has seen a momentous rise in interest since.3 In 2019, Huang et al. produced a user manual for a successful LBBP procedure, and in it they attempted to develop the first iteration of criteria for the confirmation of LBBP.4 Utilizing these criteria, or close variations of them, a number of studies were published afterwards that demonstrated preliminary safety, feasibility, and efficacy of LBBP.5,6,7 LBBP became an attractive alternative to His bundle pacing because of the lower thresholds, improved lead stability, and higher procedural success rates. When compared against RV pacing in patients requiring a high burden of pacing, LBBP has demonstrated reduced mortality, HF admissions, and need for upgrade to a BiV device.8 In a small, non-randomized patient sample, LBBP showed greater improvement in LV ejection fraction (EF) compared to BiV pacing.9 Most notably, perhaps, is the astonishing rate of lead placement success, with achievement rates reported as high as 98% in sizable studies.6Differences between the two forms of CSP were apparent from the beginning, including in the appropriate QRS morphology after a successful case. Unlike PHBP, LBBP did not reproduce the native QRS and the QRS duration was often greater than at baseline (Figure 2). The arena of LBBP underwent a notable shift in the Fall of 2021 when Wu et al. proposed new criteria to prove LBBP.10 In this study, they presented an exquisite display of fundamental electrophysiologic principles by using mapping catheters positioned on the His and LV septum during LBB lead placement. Through this painstaking work, they clarified the difference between true LBBP and left bundle branch area pacing (LBBAP), which can incorporate both LBBP and left ventricular septal pacing (LVSP). In their proposed framework, without the presence of a His or LV septum mapping catheter, output dependent QRS transition from non-selective (NS-LBBP) to selective-LBBP (S-LBBP) or LVSP is necessary to prove LBBP and had a sensitivity and specificity of 100%.The present study by Shimeno et al, published in the current issue of the Journal of Cardiovascular Electrophysiology , is the first known effort to document achievement rates of LBBP by utilizing the modified criteria proposed by Wu et al.11 The primary finding of the study is that achieving true LBBP with an acceptable pacing threshold is likely harder than previously realized. As expected, there was improvement after a learning curve, but even in the last third of patients enrolled, the achievement rate of LBBP was only 50%. This is dramatically lower than previously reported achievement rates using the original Huang et al. criteria, and it suggests that not all patients in the previously described studies were actually achieving true LBBP. An unknown subset of patients in these studies was likely only achieving LVSP. This is probably due to a prior reliance on indicators such as a paced right bundle branch block (RBBB) pattern, identification of an intrinsic LBB potential, and/or use of V6 R-wave peak time cutoffs (RWPT) without clear output-dependent QRS transition. It is also worth noting that a variety of RWPT cutoffs have been used seemingly arbitrarily as ‘evidence of LBBP’. This presents a major dilemma and highlights the need for a clear set of LBBP criteria to be defined by the collective EP community. Despite these caveats, many of these previous studies did not fully confirm LBBP in their patients, yet the outcomes from these studies were still clinically promising. This raises the obvious question, does obtaining true LBBP matter? Future studies will need to explore the differences in clinical outcomes between true LBBP and LVSP.Secondarily, Shimeno et al. have provided a useful tool in identifying that LBB potential to QRS-onset ≥ 22ms had a specificity of 98% in predicting LBBP.11 This target measure can help future operators ensure proximal enough engagement of the LBB conduction system. Additionally, the group took a close look at validating a RWPT cutoff time for the prediction of LBBP. Unfortunately, a RWPT cutoff of 68 ms (in non-LBBB patients), determined by the ROC curve, was not highly predictive. This runs contrary to previous reports by Wu et al. and Jastrzebski et al., which reported higher predictive value of RWPT cutoffs10,12 Looking at the data surrounding RWPT cutoffs as a collective, it likely should not be used as a primary metric for confirming LBBP due to imperfect sensitivity and specificity, but it may be an alternative if output dependent QRS transition or change in RWPT of ≥10 ms is not observed. Additionally, in the event that capture thresholds are similar between the LBB and the adjacent myocardium, programmed stimulation is an option to try to reveal a QRS transition by exploiting differences in refractory periods.This study also highlighted one of the unique complications of LBBP by demonstrating a high rate of septal perforation. Paradoxically, more perforations were seen with increased experience, likely highlighting that deeper penetration into the septum is often sought as operators become more familiar with the procedure. The long-term clinical implications of this complication are, thus far, unknown.Looking forward, clear guidelines for confirmation of LBBP need to be defined. This is necessary to ensure quality before undertaking multi-center randomized controlled trials to assess LBBP in comparison to current pacing methods. To date, Wu et al. seem to have provided the best framework to achieve this.10 That said, there are concerns given that this has only been validated in 30 patients (and only 9 with LBBB). In an ideal world, these criteria would be validated in a larger population, though the work to accomplish this would be meticulous given the current gold standard of using an LV septal mapping catheter to prove conduction system capture. Shimeno et al. should be congratulated for their effort in putting this framework to practice. In their work, they have demonstrated that achieving true LBBP as defined by Wu et al. may be harder than meets the eye, and this is very important in assessing the practicality of using LBBP as a widespread alternative to other pacing methods.References:Abdelrahman M, Subzposh FA, Beer D, et al. Clinical Outcomes of His Bundle Pacing Compared to Right Ventricular Pacing. J Am Coll Cardiol . 2018;71(20):2319-2330. doi:10.1016/j.jacc.2018.02.048Zanon F, Abdelrahman M, Marcantoni L, et al. Long term performance and safety of His bundle pacing: A multicenter experience. J Cardiovasc Electrophysiol . 2019;30(9):1594-1601. doi:10.1111/jce.14063Huang W, Su L, Wu S, et al. A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Can J Cardiol . 2017;33(12):1736.e1-1736.e3. doi:10.1016/j.cjca.2017.09.013Huang W, Chen X, Su L, Wu S, Xia X, Vijayaraman P. A beginner’s guide to permanent left bundle branch pacing. Heart Rhythm . 2019;16(12):1791-1796. doi:10.1016/j.hrthm.2019.06.016Padala SK, Master VM, Terricabras M, et al. Initial Experience, Safety, and Feasibility of Left Bundle Branch Area Pacing: A Multicenter Prospective Study. JACC Clin Electrophysiol . 2020;6(14):1773-1782. doi:10.1016/j.jacep.2020.07.004Su L, Wang S, Wu S, et al. Long-Term Safety and Feasibility of Left Bundle Branch Pacing in a Large Single-Center Study. Circ Arrhythm Electrophysiol . 2021;14(2):e009261. doi:10.1161/CIRCEP.120.009261Huang W, Wu S, Vijayaraman P, et al. Cardiac Resynchronization Therapy in Patients With Nonischemic Cardiomyopathy Using Left Bundle Branch Pacing. JACC Clin Electrophysiol . 2020;6(7):849-858. doi:10.1016/j.jacep.2020.04.011Sharma PS, Patel NR, Ravi V, et al. Clinical outcomes of left bundle branch area pacing compared to right ventricular pacing: Results from the Geisinger-Rush Conduction System Pacing Registry. Heart Rhythm . 2022;19(1):3-11. doi:10.1016/j.hrthm.2021.08.033Wu S, Su L, Vijayaraman P, et al. Left Bundle Branch Pacing for Cardiac Resynchronization Therapy: Nonrandomized On-Treatment Comparison With His Bundle Pacing and Biventricular Pacing. Can J Cardiol . 2021;37(2):319-328. doi:10.1016/j.cjca.2020.04.037Wu S, Chen X, Wang S, et al. Evaluation of the Criteria to Distinguish Left Bundle Branch Pacing From Left Ventricular Septal Pacing. JACC Clin Electrophysiol . 2021;7(9):1166-1177. doi:10.1016/j.jacep.2021.02.018Shimeno K, Tamura S, Hayashi Y, et al. Achievement Rate and Learning Curve of Left Bundle Branch Capture in Left Bundle Branch Area Pacing Procedure Performed to Demonstrate Output-Dependent QRS Transition.J Cardiovasc Electrophysiol . 2022Jastrzębski M, Kiełbasa G, Curila K, et al. Physiology-based electrocardiographic criteria for left bundle branch capture. Heart Rhythm . 2021;18(6):935-943. doi:10.1016/j.hrthm.2021.02.021Figure LegendsFigure 1: Permanent His Bundle PacingPanel A: A 12-lead electrocardiogram (EKG) shows baseline conduction in a patient with exertional intolerance. The PR interval is markedly prolonged and, with exercise, this patient developed AV block. A permanent His-bundle pacemaker was implantedPanel B: An EKG demonstrating permanent His-bundle pacing in the same patient as panel A. Selective His-bundle capture results in reproduction of the intrinsic QRS complex.Figure 2: Non-Selective Left Bundle Branch PacingA 12-Lead electrocardiogram showing non-selective left bundle branch pacing. The paced QRS morphology is not a direct match for native conduction and the QRS duration is longer than at baseline. However, conduction system capture was confirmed with an output dependent QRS morphology change.FiguresFigure 1: Permanent His-Bundle Pacing
Title: Percutaneous Lead Extraction in Patients with Large Vegetations: Limiting our Aspirations.Robert D. Schaller, DO11The Section of Cardiac Electrophysiology, Cardiovascular Division, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PennsylvaniaFunding: This work was supported in part by the Mark Marchlinski EP Research & Education FundKey words: Lead extraction, vegetation, pulmonary embolism, thrombus, aspirationDisclosures: NoneWord count: 1547Transvenous lead extraction (TLE) in the 1960’s involved orthopedic-style pulley systems that joined the exposed portion of the lead to progressively heavier weights hanging from the bed. Sustained tension on the lead was maintained until the patient experienced discomfort, ventricular arrhythmias, or noticeable resistance developed, and was maintained for minutes to days. The location of the lead within the chest was monitored with daily chest radiographs and the ensuingbang of the weight hitting the floor of the intensive care unit signified case conclusion; at which point the patient was assessed. Complications were erratic and included lead laceration and possible migration, injury to the tricuspid valve (TV), myocardial avulsion, tamponade, and death.1 Due to the immature nature of the procedure at that time, it was relegated to infectious indications including lead-related endocarditis, at that time referred to as “catheter fever”.Contemporary TLE has evolved into a highly refined practice with a multitude of tools and predictable results, and procedural indications that now span infection, venous occlusion, management of redundant leads, and access to magnetic resonance imaging.2Procedural imaging with computed tomography (CT) and real-time ultrasound-based tools have similarly changed the TLE experience with identification of adhesions, thrombi, vegetations, and complications.3 Large lead-related masses have historically caused angst due to the possibility of being sheared off by the extraction sheath and embolizing to the lung, and still represent a relative contraindication to percutaneous TLE.2In this issue of the Journal of Cardiovascular Electrophysiology , Giacopelli, et al.4 present the outcomes of 25 consecutive patients (mean age 64 years, 68% male) including 5 with pacemakers, 10 with implantable cardioverter-defibrillators, and 10 with cardiac resynchronization therapy devices, who underwent TLE with vegetations ≥10 mm on transesophageal echocardiography (TEE). Contrast-enhanced CT was performed before and after TLE with 18 (72%) patients showing subclinical pulmonary embolism (PE). Vegetation size (median of 17.5 mm and maximum of 30 mm) did not differ in those with and without PE (20.0 mm vs. 14.0 mm, p=0.116). Complete TLE success was achieved in all patients with 76% requiring advanced tools and 2 needing femoral snaring, and there were no significant procedural complications. In the group with pre-TLE PE, a post-TLE scan confirmed the presence of PE in only 14/18 (78%) and there were no patients with new PE formation. During a median follow-up period of 19.4 months, no re-infection of the new implanted systems was reported and there were 5 deaths (20%); with no differences between the groups. The authors concluded that subclinical PE was common in this clinical scenario but did not influence the complexity or safety of the procedure.Several aspects of this paper warrant comment. No data are reported on the size or location of the PEs nor the time between the first and second CT. It is possible that small PEs would not be identified on subsequent studies days after antibiotics had already been started. Patients also received acute and chronic anticoagulation if PE was identified, which in the setting of vegetations, is generally not indicated and could potentially lead to bleeding. The authors did not provide information regarding infectious pathogens or the timing of culture clearance, which could influence treatment. Additionally, it is unclear which patients received new CIED systems including the type and timing of reimplantation, which might influence subsequent infectious risk. A vascular occlusion balloon was not used in any patients in this report. While this tool is associated with a reduced risk of death in the setting of a superior vena cava laceration when used properly, it has also been shown to be thrombogenic during long dwell times,5 and use could impact post-operative CTs in future studies. Despite utilizing transthoracic echocardiography during TLE, neither TEE nor intracardiac echocardiography were used intraoperatively and thus no information regarding the precise location of the vegetations within the heart is known. Importantly, no information regarding the characteristics of the vegetations other than size was reported.Not all lead-related masses are created equal with two distinct sub-types previously described.6 The first is composed of thickened endocardium and fibrous tissue covering the leads and ultimately forming into connective tissue. These masses, commonly found on leads behind the TV, are caused by a vortical flow pattern leading to low shear stress on the lead surface and provoking neointimal hyperplasia,7 and range from small fibrous strands to large, smooth organized thrombus (Figure, left column). Despite their sterile nature, TLE in the setting of a large, mature thrombus could result in embolization and obstruction of the pulmonary artery resulting in symptomatic PE. The second type, frequently seen in the setting of infective endocarditis, is composed of inflammatory cells, platelets, adhesion molecules, fresh fibrin, and bacteria binding to coagulum and forming vegetations. They are typically longer, more likely to be multi-lobular, and commonly span several chambers of the heart (Figure, right column). These vegetations that are typically acute, with friable finger-like projections, characteristically break apart upon being sheared off during TLE, with reports showing low risk of symptomatic PE.8 Vegetations that are lobular, however, have been associated with worse outcomes.9Despite acute procedural success in the setting of lead-related vegetations, mortality rates at 1 year approach 25%.10 Indeed, despite successful TLE in this report, 20% of patients were dead at 1.5 years. Although complete understanding of the mechanism of these poor outcomes remains unknown, septic emboli, lung abscesses, and infected lead “ghosts” have been implicated.11 Vegetation removal prior to TLE has thus represented an appealing therapeutic option with reports of successful percutaneous aspiration prior to TLE showing promising results, albeit with unknown long-term benefit.12,13 Although the lack of new PEs after TLE in this report does not directly support the effort, cost, and added risk of such a strategy, “debulking” of infectious burden remains a tempting complementary treatment. Importantly, the acute safety of TLE with large vegetations in this study should not be extrapolated to chronic, large lead-related masses, which are more like to cause acute PE if embolized. While aspiration of these sterile masses prior to TLE is appealing from a procedural outcome perspective, their morphologic characteristics, and the imperfect, but evolving, aspiration sheaths currently available are limiting, and requires consideration of surgical extraction. Further advancements in aspiration catheter technology and the development of right ventricular outflow track filters might influence future management.TLE continues to represent the gold standard for the management of lead-related infection.2 Due to the extensive work of the pathfinders in the vanguard of procedural development, the sound of crashing weights has been supplanted by those that power advancing sheaths. Yet despite the safe and predictable nature of modern-day TLE, the sobering long-term mortality of patients with infectious indications remains out of proportion to acute procedural success. While infectious “debulking” continues to represent the most attractive and practical complementary option to address this incongruity, future studies should concentrate both on identification of mass characteristics that suggest success, as well as determining if long-term benefits exist above and beyond lead removal. However, if improvement in clinical outcomes that warrant this added cost and effort are not identified, we should likely limit our aspirations.

Browse more published preprints

How it works

Upload or create your research work
You can upload Word, PDF, LaTeX as well as data, code, Jupyter Notebooks, videos, and figures. Or start a document from scratch.
Disseminate your research rapidly
Post your work as a preprint. A Digital Object Identifier (DOI) makes your research citeable and discoverable immediately.
Get published in a refereed journal
Track the status of your paper as it goes through peer review. When published, it automatically links to the publisher version.
Learn More
Featured communities
Explore More Communities

Other benefits of Authorea

Multidisciplinary

A repository for any field of research, from Anthropology to Zoology

Comments

Discuss your preprints with your collaborators and the scientific community

Interactive Figures

Not just PDFs. You can publish d3.js and Plot.ly graphs, data, code, Jupyter notebooks

Featured templates
Featured and interactive
Journals with direct submission
Explore All Templates