Andrew P. Dimmock

and 10 more

Mirror modes are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on mirror modes observed in the solar wind by Solar Orbiter for heliocentric distances between 0.5 and 1 AU. Typically, mirror modes have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency mirror modes are measured, which have been labeled previously as mirror mode storms. At present, only a handful of existing studies have focused on mirror mode storms, meaning that many open questions remain. In this study, Solar Orbiter has been used to investigate several key aspects of mirror mode storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that mirror mode storms often approach local ion scales and can no longer be treated as quasi-MHD, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.
One of the prominent effects of space weather is the variation of electric currents in the magnetosphere and ionosphere, which can cause localized, high amplitude Geomagnetic Disturbances (GMDs) that disrupt ground conducting systems. Because the source of localized GMDs is unresolved, we are prompted to model these effects, identify the physical drivers through examination of the model we use, and improve our prediction of these phenomena. We run a high-resolution configuration of the Space Weather Modeling Framework (SWMF) to model the September 7, 2017 event, combining three physical models: Block Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US), an ideal magnetohydrodynamic model of the magnetosphere; the Ridley Ionosphere Model (RIM), a shell ionosphere calculated by solving 2-D Ohm’s Law; and the Rice Convection Model (RCM), a kinetic drift model of the inner magnetosphere. The configuration mirrors that which is used in Space Weather Prediction Center (SWPC) operations; however, the higher grid resolution can reproduce mesoscale structure in the tail and ionosphere. We use two metrics to quantify the success of the model against observation. Regional Station Difference (RSD) is a metric that uses dB/dt or geoelectric field to pinpoint when a single magnetometer station records a significantly different value than others within a given radius, indicating a localized GMD. Regional Tail Difference (RTD) performs the same calculation using relevant variables in the magnetosphere at points that map down along field lines to the magnetometer station locations on the ground. We theorize two distinct causes of RSD, the first being small-scale structure in the tail and the second being station field lines mapping to spatially separated locations in the tail. We examine the differences between RSD spikes that we can reproduce in the model and those that we cannot. We categorize spikes by cause of localized GMDs to examine model capability for each theorized cause. We investigate the improvements in our model when we switch from empirical specification of ionosphere conductance to a physics-based one, MAGNetosphere-Ionosphere-Thermosphere (MAGNIT) Auroral Conductance Model. For small-scale effects we cannot reproduce, we explore the deficiencies in our model.