Xinjian Shi

and 8 more

Epichloë endophytes can improve the resistance of host grasses to pathogenic fungi in grasslands. However, little is known about the mechanisms involved. We investigated the mechanisms underlying the effect of Epichloë sibirica on the resistance of Achnatherum sibiricum to Curvularia lunata by metabolomics approaches. The results demonstrated that before and after pathogen inoculation, 58 and 157 differential metabolites (DMs) were respectively induced by endophytes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DMs showed that amino acids and phenols were mostly accumulated by endophytic infection. Integrated transcriptome and metabolomics KEGG analysis revealed that plant hormone signal transduction was significantly enriched. After measurement, we found that endophytic infection increased jasmonic acid (JA) concentration before pathogen inoculation and increased ethylene (ET) and pipecolic acid concentration after pathogen inoculation. Exogenous phytohormones treatment verified that endophytes improved the disease resistance of A. sibiricum by promoting JA and ET accumulation. In phenylpropanoid synthetic pathway, the endophytes promoted the accumulation of ferulic acid, p-coumaroylagmatine, and feruloylputrescine which was related to resistance against plant disease. Overall, our research suggests that Epichloë endophytes presumably trigger induced systemic resistance of the hosts to pathogenic fungi via activating JA/ET signaling pathways and promoted antimicrobial phenol accumulation in hosts.

Xinjian Shi

and 8 more