Alexandre H. Nott

and 2 more

Extreme weather events are reshaping hydrological cycles across the globe, yet our understanding of the groundwater response to these extremes remains limited. Here we analyze groundwater levels across the South Coast of British Columbia (BC) in the Pacific Northwest with the objective of determining groundwater responses to atmospheric rivers (ARs) and drought. An AR catalogue was derived and associated to local rainfall defining extreme precipitation. Droughts were quantified using dry day metrics, in conjunction with the standardized precipitation index (SPI). From September to January, approximately 40% of total precipitation is contributed by ARs. From April to September, more than 50% of days receive no precipitation, with typically 26 consecutive dry days. We used the autocorrelation structure of groundwater levels to quantify aquifer memory characteristics and identified two distinct clusters. Cluster 1 wells respond to recharge from local precipitation, primarily rainfall, and respond rapidly to both ARs during winter recharge and significant rainfall deficits during summer. Cluster 2 wells are also driven by local precipitation, and are additionally influenced by the Fraser River’s large summer freshet, briefly providing a secondary recharge mechanism to South Coast aquifers. Accordingly, groundwater recessions are offset to later in the summer, contingent on the Fraser River, mediating drought. The results suggest that groundwater memory encapsulates multiple hydrogeological factors, including boundary conditions, influencing the response outcome to extreme events.

Alexandre H. Nott

and 2 more

Most studies on the impacts of extreme hydrometeorological events on hydrological processes have focused primarily on surface water systems rather than groundwater systems. This study explores and seeks to untangle the complex nature of groundwater dynamics and resilience across British Columbia (BC) in response to the 2021 heatwave-intensified drought and atmospheric rivers (ARs). Historically, there have been many episodic drought events along with substantially wet periods. However, 2021 marked an unprecedented year for the immediate co-occurrence of intense and extreme drought and deluge. This weather whiplash resulted in the lowest and highest groundwater levels on record for many wells across BC. The record meteorological drought, intensified by a 13-day heatwave in late June, affected the entire province and lasted for over 50 days in the south coast region. This was followed in November by the most intense ARs to make landfall on record in southwestern BC. Groundwater hydrograph anomalies for 2021 were computed relative to their short-term historical mean for 194 provincial observation wells across the province. The 2021 anomalies showed a limited but distinct range of responses to both the drought and ARs, and cluster into three response groups, largely associated with their respective hydroclimatic regime. Many coastal wells showed a strong response to drought; however, nearly all wells in the southern interior responded substantially, with groundwater levels significantly below their historical range by late summer. Presently, groundwater levels seem to have recovered across the province, especially on the coast. This resiliency is attributed in part to the ARs that made landfall since last year along with a particularly wet, La Niña winter. The majority of coastal wells showed a much stronger signal to the ARs compared to the interior or eastern BC wells, likely due to the more rapid and intense rainfall experienced in southwestern BC. Groundwater systems across BC were variably impacted by these hydrometeorological extremes, showcasing the need for focused and area-specific approaches to water allocation decisions in assuring sustainable withdrawal practices.