Kelly Ortega-Cisneros

and 39 more

As the urgency to evaluate the impacts of climate change on marine ecosystems increases, there is a need to develop robust projections and improve the uptake of ecosystem model outputs in policy and planning. Standardising input and output data is a crucial step in evaluating and communicating results, but can be challenging when using models with diverse structures, assumptions, and outputs that address region-specific issues. We developed an implementation framework and workflow to standardise the climate and fishing forcings used by regional models contributing to the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) and to facilitate comparative analyses across models and a wide range of regions, in line with the FishMIP 3a protocol. We applied our workflow to three case study areas-models: the Baltic Sea Mizer, Hawai’i-based Longline fisheries therMizer, and the southern Benguela ecosystem Atlantis marine ecosystem models. We then selected the most challenging steps of the workflow and illustrated their implementation in different model types and regions. Our workflow is adaptable across a wide range of regional models, from non-spatially explicit to spatially explicit and fully-depth resolved models and models that include one or several fishing fleets. This workflow will facilitate the development of regional marine ecosystem model ensembles and enhance future research on marine ecosystem model development and applications, model evaluation and benchmarking, and global-to-regional model comparisons.

Julia L. Blanchard

and 42 more

There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world’s fisheries occur. Furthermore, previous FishMIP climate impact projections have mostly ignored fishing activity due to a lack of standardized historical and scenario-based human activity forcing and uneven capabilities to dynamically model fisheries across the FishMIP community. This, in addition to underrepresentation of coastal processes, has limited the ability to evaluate the FishMIP ensemble’s ability to adequately capture past states - a crucial step for building confidence in future projections. To address these issues, we have developed two parallel simulation experiments (FishMIP 2.0) on: 1) model evaluation and detection of past changes and 2) future scenarios and projections. Key advances include historical climate forcing, that captures oceanographic features not previously resolved, and standardized fishing forcing to systematically test fishing effects across models. FishMIP 2.0 is a key step towards a detection and attribution framework for marine ecosystem change at regional and global scales, and towards enhanced policy relevance through increased confidence in future ensemble projections.