Benjamin W. Abbott

and 20 more

The concepts of resistance, recovery, and resilience are in diverse fields from behavioral psychology to planetary ecology. These “three Rs” describe some of the most important properties allowing complex systems to survive in dynamic environments. However, in many fields—including ecology—our ability to predict resistance, recovery and resilience remains limited. Here, we propose new disturbance terminology and describe a unifying definition of resistance, recovery, and resilience. We distinguish functional disturbances that affect short-term ecosystem processes from structural disturbances that alter the state factors of ecosystem development. We define resilience as the combination of resistance and recovery—i.e., the ability of a system to maintain its state by withstanding disturbance or rapidly recovering from it. In the Anthropocene, humans have become dominant drivers of many ecosystem processes and nearly all the state factors influencing ecosystem development. Consequently, the resilience of an individual ecological parameter is not an inherent attribute but a function of linkages with other biological, chemical, physical, and especially social parameters. Because every ecosystem experiences multiple, overlapping disturbances, a multidimensional resilience approach is needed that considers both ecosystem structure (configuration of linkages) and disturbance regime. We explore these concepts with a few case studies and recommend analytical tools and community-based approaches to strengthen ecosystem resilience. Disregarding cultural and social dimensions of disturbance regimes and ecosystem structures leads to undesirable outcomes, particularly in our current context of intensifying socioecological crises. Consequently, cultivating reciprocal relationships with natural disturbance regimes and ecosystem structures is crucial to Earth stewardship in the Anthropocene.

Jeremy E. Matt

and 5 more

Centuries of human development have altered the connectivity of rivers, adversely impacting ecosystems and the services provided. Significant investments in natural resource projects are made annually with the goal to restore function to degraded rivers and floodplains and protect freshwater resources. Yet restoration projects often fall short of their objectives, in part, due to the lack of systems-based, strategic planning. To evaluate channel-floodplain (dis)connectivity and erosion/incision hazard at the regional scale, we calculate Specific Stream Power (SSP), an estimate of the energy of a river, using a topographically-based, low-complexity hydraulic model. Other basin-wide SSP modeling approaches neglect reach-specific geometric information embedded in Digital Elevation Models. Our approach leverages this information to generate reach-specific SSP-flow curves. We extract measures from these curves that describe (dis)connected floodwater storage capacity and erosion hazard at individual design storm flood stages and demonstrate how these measures may be used to identify watershed-scale patterns in connectivity. We show proof-of-concept using 25 reaches in the Mad River watershed in central Vermont and demonstrate that the SSP results have acceptable agreement with a well-calibrated process-based model (2D Hydraulic Engineering Center’s River Analysis System) across a broad range of design events. While systems-based planning of regional restoration and conservation activities has been limited largely due to computational and human resource requirements, measures derived from low complexity models can provide an overview of reach-scale conditions at the regional level and aid planners in identifying areas for further restoration and/or conservation assessments.