Joel Carey Rowland

and 13 more

Whether the presence of permafrost systematically alters the rate of riverbank erosion is a fundamental geomorphic question with significant importance to infrastructure, water quality, and biogeochemistry of high latitude watersheds. For over four decades this question has remained unanswered due to a lack of data. Using remotely sensed imagery, we addressed this knowledge gap by quantifying riverbank erosion rates across the Arctic and subarctic. To compare these rates to non-permafrost rivers we assembled a global dataset of published riverbank erosion rates. We found that erosion rates in rivers influenced by permafrost are on average six times lower than non-permafrost systems; erosion rate differences increase up to 40 times for the largest rivers. To test alternative hypotheses for the observed erosion rate difference, we examined differences in total water yield and erosional efficiency between these rivers and non-permafrost rivers. Neither of these factors nor differences in river sediment loads provided compelling alternative explanations, leading us to conclude that permafrost limits riverbank erosion rates. This conclusion was supported by field investigations of rates and patterns of erosion along three rivers flowing through discontinuous permafrost in Alaska. Our results show that permafrost limits maximum bank erosion rates on rivers with stream powers greater than 900 W/m-1. On smaller rivers, however, hydrology rather thaw rate may be dominant control on bank erosion. Our findings suggest that Arctic warming and hydrological changes should increase bank erosion rates on large rivers but may reduce rates on rivers with drainage areas less than a few thousand km2.

Nicholas A Sutfin

and 6 more

Changes in the magnitude and frequency of river flows have potential to alter sediment dynamics and morphology of rivers globally, but the direction of these changes remains uncertain. A lack of data across spatial and temporal scales limits understanding of river flow regimes and how changes in these regimes interact with river bank erosion and floodplain deposition. Linking characteristics of the flow regime to changes in bank erosion and floodplain deposition is necessary to understand how rivers will adjust to changes in hydrology from societal pressures and climatic change, particularly in snowmelt-dominated systems. We present a lidar dataset, intensive field surveys, aerial imagery and hydrologic analysis spanning 60 years, and spatial analysis to quantify bank erosion, lateral accretion, floodplain overbank deposition, and a floodplain fine sediment budget in an 11-km long study segment of the meandering gravel bed East River, Colorado, USA. Stepwise regression analysis of channel morphometry in nine study reaches and snowmelt-dominated annual hydrologic indices in this mountainous system suggest that sinuosity, channel width, recession slope, and flow duration are linked to lateral erosion and accretion. The duration of flow exceeding baseflow and the slope of the annual recession limb explain 59% and 91% of the variability in lateral accretion and erosion, respectively. This strong correlation between the rate of change in river flows, which occurs over days to weeks, and erosion suggests a high sensitivity of sedimentation along rivers in response to a shifting climate in snowmelt-dominated systems, which constitute the majority of rivers above 40° latitude.