Andreas Franz Prein

and 12 more

Mesoscale convective systems (MCSs) are clusters of thunderstorms that are important in Earth’s water and energy cycle. Additionally, they are responsible for extreme events such as large hail, strong winds, and extreme precipitation. Automated object-based analyses that track MCSs have become popular since they allow us to identify and follow MCSs over their entire life cycle in a Lagrangian framework. This rise in popularity was accompanied by an increasing number of MCS tracking algorithms, however, little is known about how sensitive analyses are concerning the MCS tracker formulation. Here, we assess differences between six MCS tracking algorithms on South American MCS characteristics and evaluating MCSs in kilometer-scale simulations with observational-based MCSs over three years. All trackers are run with a common set of MCS classification criteria to isolate tracker formulation differences. The tracker formulation substantially impacts MCS characteristics such as frequency, size, duration, and contribution to total precipitation. The evaluation of simulated MCS characteristics is less sensitive to the tracker formulation and all trackers agree that the model can capture MCS characteristics well across different South American climate zones. Dominant sources of uncertainty are the segmentation of cloud systems and the treatment of splitting and merging of storms in MCS trackers. Our results highlight that comparing MCS analyses that use different tracking algorithms is challenging. We provide general guidelines on how MCS characteristics compare between trackers to facilitate a more robust assessment of MCS statistics in future studies.

Gregory Elsaesser

and 4 more

Deep convective system maximum areal extent is driven by the stratiform anvil area since system convective area fractions are much less than unity when systems reach peak size. It is important to understand the processes that drive system size given the impact large systems have on rainfall and since anvils may strongly impact high cloud feedbacks. Using satellite diabatic heating and convective-stratiform information mapped to convective systems, composite analyses suggest that system maximum sizes occur at the temporal mid-point of system lifecycles with both maximum size and duration correlating with peak heating above the melting level. However, variations in system growth rates exist, with the overall smooth composites emerging as the average of highly variable system trajectories. Thus, this study focuses on understanding convective system growth rates on short (30-minute) timescales via development of a simple analytical source - sink model that predicts system area changes. Growth occurs when detrained convective mass (inferred from the vertical gradient of diabatic heating and temperature lapse rates) and/or generation of convective area exceeds a sink term whose magnitude is proportional to the current cloud shield size. The model works well for systems over land and ocean, and for systems characterized by varying degrees of convective organization and duration (1.5 - 35 hr, with correlations often >0.8 across lifetime bins). The model may serve as a useful foundation for improved understanding of processes driving changes in tropics-wide convective system cloud shields, and further supports conceptual development and evaluation of prognostic climate model stratiform anvil area parameterizations.