Eric Fielding

and 7 more

The subduction zone of the Cocos Plate beneath Southern Mexico has major variations in the megathrust geometry and behavior. The subduction segment beneath the Oaxaca state of Mexico has relatively frequent large earthquakes on the shallow part of the megathrust and within the subducting slab, and it also has large aseismic slow-slip events. The slab geometry under Oaxaca includes part of the subhorizontal “flat-slab” zone extending far from the trench beneath southern Mexico and the beginning of its transition to more regular subduction geometry to the southeast. We study the rupture of the 16 February 2018 Mw 7.2 Pinotepa earthquake near Pinotepa Nacional in Oaxaca that was a thrust event on the subduction interface. The Pinotepa earthquake was about 350 km away from the 8 September 2017 Mw 8.2 Tehuantepec earthquake in the subducting slab offshore Oaxaca and Chiapas; it was in an area of Coulomb stress decrease from the M8.2 quake, so it seems unlikely to be a regular aftershock and was not triggered by the static stress change. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite-fault slip models for the M7.2 Pinotepa earthquake. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our Bayesian (AlTar) static slip model for the Pinotepa earthquake shows all of the slip confined to a very small (10-20 km diameter) rupture, similar to some early seismic waveform fits. The Pinotepa earthquake ruptured a portion of the Cocos megathrust that has been previously mapped as partially coupled and shows that at least small asperities in that zone of the subduction interface are fully coupled and fail in high-stress drop earthquakes. The previous 2012 Mw 7.4 Ometepec earthquake is another example of asperity in the partially coupled zone but was not imaged by InSAR so the rupture extent is not so well constrained. The preliminary NEIC epicenter for the Pinotepa earthquake was about 40 km away (NE) from the rupture imaged by InSAR, but the NEIC updated epicenter and Mexican SSN location are closer. Preliminary analysis of GPS data after the Pinotepa earthquake indicates rapid afterslip on the megathrust in the region of coseismic slip. Atmospheric noise masks the postseismic signal on early InSAR data.

Eric Fielding

and 9 more

The 4 July 2019 Mw 6.4 Earthquake and 5 July Mw 7.1 Earthquake struck near Ridgecrest, California. Caltech-Jet Propulsion Laboratory Advanced Rapid Imaging and Analysis (ARIA) project automatically processed synthetic aperture radar (SAR) images from Copernicus Sentinel-1A and -1B satellites operated by the European Space Agency, and products were delivered to the US and California Geological Surveys to aid field response. We integrate geodetic measurements for the three-dimensional vector field of coseismic surface deformation for thee two events and measure the early postseismic deformation, using SAR data from Sentinel-1 satellites and the Advanced Land Observation Satellite-2 (ALOS-2) satellite operated by Japanese Aerospace Exploration Agency. We combine less precise large-scale displacements from SAR images by pixel offset tracking or matching, including the along-track component, with the more precise SAR interferometry (InSAR) measurements in the radar line-of-sight direction and intermediate-precision along-track InSAR to estimate all three components of the surface displacement for the two events together. InSAR coherence and coherence change maps the surface disruptions due to fault ruptures reaching the surface. Large slip in the Mw 6.4 earthquake was on a NE-striking fault that intersects with the NW-striking fault that was the main rupture in the Mw 7.1 earthquake. The main fault bifurcates towards the southeast ending 3 km from the Garlock Fault. The Garlock fault had triggered slip of about 15 mm along a short section directly south of the main rupture. About 3 km NW of the Mw 7.1 epicenter, the surface fault separates into two strands that form a pull-apart with about 1 meter of down-drop. Further NW is a wide zone of complex deformation. We image postseismic deformation with InSAR data and point measurements from new GPS stations installed by the USGS. Initial analysis of the first InSAR measurements indicates the pull-apart started rebounding in the first weeks and the main fault had substantial afterslip close to the epicenter where the largest coseismic slip occurred. Slip on a NE-striking fault near the northern end of the main rupture in the first weeks, in the same zone as large and numerous aftershocks along NE-striking and NW-striking trends shows complex deformation.