Shun-Rong Zhang

and 8 more

The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least four days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ~300-350 m/s (depending on the propagation direction) and 500-1000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 hours since the eruption. TIDs following the shock fronts developed for ~8 hours with 10-30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels of atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances.

Diego Sanchez

and 8 more

Traveling Ionospheric Disturbances (TIDs) are propagating variations in ionospheric electron densities that affect radio communications and can help with understanding energy transport throughout the coupled magnetosphere-ionosphere-neutral atmosphere system. Large scale TIDs (LSTIDs) have periods T ≈30-180 min, horizontal phase velocities vH≈‍100-‍250 m/s, and horizontal wavelengths H>1000 km and are believed to be generated either by geomagnetic activity or lower atmospheric sources. TIDs create concavities in the ionospheric electron density profile that move horizontally with the TID and cause skip-distance focusing effects for high frequency (HF, 3-30 MHz) radio signals propagating through the ionosphere. The signature of this phenomena is manifest as quasi-periodic variations in contact ranges in HF amateur radio communication reports recorded by automated monitoring systems such as the Weak Signal Propagation Reporting Network (WSPRNet) and the Reverse Beacon Network (RBN). In this study, members of the Ham Radio Science Citizen Investigation (HamSCI) present a climatology of LSTID activity using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector (North America and Europe), season, and geomagnetic activity level. Connections to geospace are explored via SYM-H and Auroral Electrojet indexes, while neutral atmospheric sources are explored using NASA’s Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2).