We combine earthquake spectra from multiple studies to investigate whether the increase in stress drop with depth often observed in the crust is real, or an artifact of decreasing attenuation (increasing Q) with depth. In many studies, empirical path and attenuation corrections are assumed to be independent of the earthquake source depth. We test this assumption by investigating whether a realistic increase in Q with depth (as is widely observed) could remove some of the observed apparent increase in stress drop with depth. We combine event spectra, previously obtained using spectral decomposition methods, for over 50,000 earthquakes (M0 to M5) from 12 studies in California, Nevada, Kansas and Oklahoma. We find that the relative high-frequency content of the spectra systematically increases with increasing earthquake depth, at all magnitudes. By analyzing spectral ratios between large and small events as a function of source depth, we explore the relative importance of source and attenuation contributions to this observed depth dependence. Without any correction for depth-dependent attenuation, we find a systematic increase in stress drop, rupture velocity, or both, with depth, as previously observed. When we add an empirical, depth-dependent attenuation correction, the depth dependence of stress drop systematically decreases, often becoming negligible. The largest corrections are observed in regions with the largest seismic velocity increase with depth. We conclude that source parameter analyses, whether in the frequency or time domains, should not assume path terms are independent of source depth, and should more explicitly consider the effects of depth-dependent attenuation.

Hilary Chang

and 6 more

We investigate the influence of local site effects on earthquake source parameter estimates using the LArge-n Seismic Survey in Oklahoma (LASSO). The LASSO array consisted of 1825 stations in a 25 km x 32 km region with extensive wastewater injection and recorded more than 1500 local events (M < 3) during spring 2016. We analyze the site amplification dependence on earthquake corner frequency (fc), seismic moment (M0), and stress drop estimated by modeling individual spectra. We evaluate and correct these site effects and compare the effectiveness of the correction to results using the spectral ratio method. We estimate local site amplification at each station using the average Peak-Ground-Velocity (PGV) of 14 regional earthquakes (~130 km away). The fc from the single spectrum method negatively correlates with site amplification, whereas M0 from the single spectrum method positively correlates with site amplification. This suggests the source parameters calculated by modeling individual spectra are biased by the local site effects. The high amplifications are typically located on young alluvial sedimentary deposits. We correct site effects by removing the trend between PGV and these two parameters in the regression analysis, which reduces the standard deviation of these parameters across the array and makes the calculated stress drop less site dependent. We compare corrections using other site-effect proxies such as the Root-Mean-Square (RMS) amplitude, surface geological formation, P-arrival-delay, and topographic slope. The PGV and the RMS corrections provide the greatest reduction of the spatial deviation of source parameters. In comparison, the spectral ratio method effectively removes the site effects using the Empirical Green’s Function (EGF) approach. The trends being removed by EGF are close to the apparent trends between the single spectrum estimated parameters and the PGV, which suggests the consistency of these different correction approaches. Our results provide a potential way to remove the site effects when only the main event spectrum is available and demonstrates the effectiveness of using the EGF approach for removing site effects. The resulting inter-station variability provides an estimate of the likely uncertainty in source parameters estimated from smaller numbers of stations.