Deborah Wehner

and 7 more

We present a new 3-D seismic structural model of the eastern Indonesian region and its surroundings from full-waveform inversion (FWI) that exploits seismic data filtered at periods between 15 - 150 s. SASSY21 - a recent 3-D FWI tomographic model of Southeast Asia - is used as a starting model, and our study region is characterized by particularly good data coverage, which facilitates a more refined image. We use the spectral-element solver Salvus to determine the full 3-D wavefield, accounting for the fluid ocean explicitly by solving a coupled system of acoustic and elastic wave equations. This is computationally more expensive but allows seismic waves within the water layer to be simulated, which becomes important for periods ≤ 20 s. We investigate path-dependent effects of surface elevation (topography and bathymetry) and the fluid ocean on synthetic waveforms, and compare our final model to the tomographic result obtained with the frequently used ocean loading approximation. Furthermore, we highlight some of the key features of our final model - SASSIER22 - after 34 L-BFGS iterations, which reveals detailed anomalies down to the mantle transition zone, including a convergent double-subduction zone along the southern segment of the Philippine Trench, which was not evident in the starting model. A more detailed illumination of the slab beneath the North Sulawesi Trench reveals a pronounced positive wavespeed anomaly down to 200 km depth, consistent with the maximum depth of seismicity, and a more diffuse but aseismic positive wavespeed anomaly that continues to the 410 km discontinuity.

Deborah Wehner

and 7 more

We present the first continental-scale seismic model of the lithosphere and underlying mantle beneath Southeast Asia obtained from adjoint waveform tomography (often referred to as full-waveform inversion or FWI), using seismic data filtered at periods from 20 - 150s. Based on >3,000h of analyzed waveform data gathered from ~13,000 unique source-receiver pairs, we image isotropic P-wave velocity, radially anisotropic S-wave velocity and density via an iterative non-linear inversion that begins from a 1-D reference model. At each iteration, the full 3-D wavefield is determined through an anelastic Earth, accommodating effects of topography, bathymetry and ocean load. Our data selection aims to maximize sensitivity to deep structure by accounting for body-wave arrivals separately. SASSY21, our final model after 87 iterations, is able to explain true-amplitude data from events and receivers not included in the inversion. The trade-off between inversion parameters is estimated through an analysis of the Hessian-vector product. SASSY21 reveals detailed anomalies down to the mantle transition zone, including multiple subduction zones. The most prominent feature is the (Indo-)Australian plate descending beneath Indonesia, which is imaged as one continuous slab along the 180-degree curvature of the Banda Arc. The tomography confirms the existence of a hole in the slab beneath Mount Tambora and locates a high S-wave velocity zone beneath northern Borneo that may be associated with subduction termination in the mid-late Miocene. A previously undiscovered feature beneath the east coast of Borneo is also revealed, which may be a signature of post-subduction processes, delamination or underthrusting from the formation of Sulawesi.