Motoharu Nowada

and 2 more

We investigate ionospheric flow patterns occurring on 28 January 2002 associated with the development of the nightside distorted end of a J-shaped transpolar arc (nightside distorted TPA). Based on the nightside ionospheric flows near to the TPA, detected by the SuperDARN (Super Dual Auroral Radar Network) radars, we discuss how the distortion of the nightside end toward the pre-midnight sector is produced. The J-shaped TPA was seen under southward interplanetary magnetic field (IMF) conditions, in the presence of a dominant dawnward IMF-By component. At the onset time of the nightside distorted TPA, particular equatorward plasma flows at the TPA growth point were observed in the post-midnight sector, flowing out of the polar cap and then turning toward the pre-midnight sector of the main auroral oval along the distorted nightside part of the TPA. We suggest that these plasma flows play a key role in causing the nightside distortion of the TPA. SuperDARN also found ionospheric flows typically associated with Tail Reconnection during IMF Northward Non-substorm Intervals (TRINNIs) on the nightside main auroral oval, before and during the TPA interval, indicating that nightside magnetic reconnection is an integral process to the formation of the nightside distorted TPA. During the TPA growth, SuperDARN also detected anti-sunward flows across the open–closed field line boundary on the dayside that indicate the occurrence of low-latitude dayside reconnection and ongoing Dungey cycle driving. This suggests that nightside distorted TPA can grow even in Dungey-cycle-driven plasma flow patterns.

Motoharu Nowada

and 10 more

The terrestrial magnetosphere is perpetually exposed to, and significantly deformed by the Interplanetary Magnetic Field (IMF) in the solar wind. This deformation is typically detected at discrete locations by space- and ground-based observations. Earth’s aurora, on the other hand, is a globally distributed phenomenon that may be used to elucidate magnetospheric deformations caused by IMF variations, as well as plasma supply from the deformed magnetotail to the high-latitude atmosphere. We report the utilization of an auroral form known as the transpolar arc (TPA) to diagnose the plasma dynamics of the globally deformed magnetosphere. Nine TPAs examined in this study have two types of a newly identified morphology, which are designated as “J”- and “L”-shaped TPAs from their shapes, and are shown to have antisymmetric morphologies in the Northern and Southern Hemispheres, depending on the IMF polarity. The TPA-associated ionospheric current profiles suggest that electric currents flowing along the magnetic field lines (Field-Aligned Currents: FACs), connecting the magnetotail and the ionosphere, may be related to the “J”- and “L”-shaped TPA formations. The FACs can be generated by velocity shear between fast plasma flows associated with nightside magnetic reconnection and slower background magnetotail plasma flows. Complex large-scale TPA FAC structures, previously unravelled by an Magnetohydrodynamic (MHD) simulation, cannot be elucidated by our observations. However, our interpretation of TPA features in a global context facilitates the usage of TPA as a diagnostic tool to effectively remote-sense globally deformed terrestrial and planetary magnetospheric processes in response to the IMF and solar wind plasma conditions.

Motoharu Nowada

and 6 more

Based on a large database of Wideband Imaging Camera (WIC), which is a part of Far Ultraviolet (FUV) instrument, onboard the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite during 5 years between 2000 and 2005, we found a new morphological type of transpolar arcs (TPAs), which are identified as “nightside distorted TPAs”. The nightside ends of the dawnside (duskside) TPAs got distorted toward pre- (post-) midnight sector; These TPAs look like the shape of an alphabetical letter of “J” or “L”. We identified 17 nightside distorted TPAs from our database. The 12 events out of 17 nightside distorted TPA events were the dawnside TPA with the nightside end distorted toward the pre-midnight sector (“J”-shaped TPA), and the TPAs in the duskside, whose nightside parts got distorted toward the post-midnight sector, were found in the remnant 5 events (“L”-shaped TPA). Statistically, the nightside distorted TPAs can dominantly be found under the northward Interplanetary Magnetic Field (IMF) conditions. Furthermore, when the IMF-By component pointed to the dawnward (duskward) direction, the “J” (“L”)-shaped TPAs were dominantly observed, suggesting that the relation between the IMF-Bz and By orientations, and the locations of the nightside distorted TPAs is consistent with that between the IMF conditions and regular TPA previously reported. We also followed the time sequence of the nightside distorted TPA evolution with the IMAGE FUV-WIC imager and additional Polar UVI data. In most cases, the “J” and “L”-shaped TPAs started to grow from the nightside main auroral oval, and protruded to the dayside region with being distorted. In this presentation, we will introduce several selected cases of the nightside distorted TPA among our database, and discuss why and how the nightside end of the TPA became distorted toward pre- or post-midnight sectors based on the in-situ satellite nightside plasma sheet observations and the electron drift velocity distribution calculated utilizing a simple electromagnetic field model in magnetotail, together with the auroral imager data.

Motoharu Nowada

and 10 more

Since we discovered the newly morphological transpolar arc (TPA), whose nightside end got distorted toward pre- or post-midnight, identified as “nightside distorted TPAs”, their fundamental characteristics have been revealed based on investigations of the space-borne auroral imager data and corresponding solar wind conditions. Nightside distorted TPAs had two types; “J”- and “L”-shaped TPAs, and their locations of appearance (dawn or duskside of the polar cap) were governed by the polarity of the By component of the Interplanetary Magnetic Field (IMF). Furthermore, we found that the nightside distorted TPAs have antisymmetric morphologies in the Northern and Southern hemispheres, also depending on the IMF-By orientation. In this presentation, we show that that the electric currents flowing aligned to the magnetic field lines which connect between the magnetotail and the ionosphere, that is, Field-aligned currents (FACs) play an essential role in the formations of the “J”- and “L”-shaped TPAs. They are induced by significant plasma flow velocity difference (plasma flow shear) between the fast plasma flows associated with nightside magnetic reconnection and slower background plasma flows in the magnetotail. The current vortex structures with the counterclockwise rotation are also clearly seen in the ionospheric current vectors derived from fluctuations of the geomagnetic field measured at the ground observatories beneath and in close proximity of the growth regions of the nightside distorted TPA. This result suggests that the FACs were flowing out of the ionosphere toward the magnetotail (upward FACs) near the TPA. Furthermore, based on the geomagnetic field variations and the SuperDARN HF radar data, we obtained evidence in which the locations of magnetotail magnetic reconnection, which persisted even during northward IMF-Bz intervals, that is, the TPA durations, retreated further down tail as the TPA grew to the dayside. Taking into account these observational results, we finally show a model to illustrate the nightside distorted TPA (particularly, “L”-shaped TPA) formation.