Susanne Byrd

and 2 more

Mars and Venus have atmospheres but lack large-scale intrinsic magnetic fields. Consequently, the solar wind interaction at each planet results in the formation of an induced magnetosphere. Our work aims to compare the low-altitude (< 250 km) component of the induced magnetic field at Venus and Mars using observations from Pioneer Venus Orbiter (PVO) and Mars Atmosphere and Volatile EvolutioN (MAVEN). The observations from Mars are restricted to regions of weak crustal magnetism. At Venus, it has long been known the vertical structure of the induced magnetic field profiles have recurring features that enable them to be classified as either magnetized or unmagnetized. We find the induced field profiles at Mars are more varied, lack recurring features, and are unable to be classified in the same way. The solar zenith angle dependence of the low-altitude field strength at both planets is controlled by the shape of the magnetic pileup boundary. Also, because the ionospheric thermal pressure at Venus is often comparable to the solar wind dynamic pressure, the induced fields are weaker than required to balance the solar wind by themselves. By contrast, induced fields at Mars are stronger than required to achieve pressure balance. Lastly, we find the induced fields in the magnetized ionosphere of Venus have a weaker dependence on solar wind dynamic pressure than the induced fields at Mars. Our results point to planetary properties, such as planet-Sun distance, having a major effect on the properties of induced fields at nonmagentized planets.

Jasper S. Halekas

and 9 more

We describe a new method to analyze the properties of plasma waves, and apply it to observations made upstream from Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The slow measurement cadence of most charged particle instrumentation has limited the application of analysis techniques based on correlations between particle and magnetic field measurements. We show that we can extend the frequency range of applicability for these techniques, for a subset of waves that remain coherent over multiple wave periods, by sub-sampling velocity distribution function measurements and binning them by the wave phase. This technique enables the computation of correlations and transport ratios for plasma waves previously inaccessible to this technique at Mars. By computing the cross helicity, we find that most identified waves propagate upstream in the plasma frame. This supports the conclusions of previous studies, but enables a clearer determination of the intrinsic wave mode and characteristics. The intrinsic properties of observed waves with frequencies close to the proton cyclotron frequency have little spatial variability, but do have large temporal variations, likely due to seasonal changes in the hydrogen exosphere. In contrast, the predominant characteristics of waves at higher frequencies have less temporal variability, but more spatial variability. We find several indications of the presence of multiple wave modes in the lower frequency wave observations, with unusual wave properties observed for propagation parallel to the magnetic field and for background magnetic fields nearly perpendicular to the solar wind flow.