Osamu Sandanbata

and 1 more

Submarine volcano monitoring is vital for assessing volcanic hazards but challenging in remote and inaccessible environments. In the vicinity of Kita-Ioto Island, south of Japan, unusual M~5 non-double-couple volcanic earthquakes exhibited quasi-regular repetition near a submarine caldera. Following the 2008 earthquake, a distant ocean bottom pressure sensor recorded a distinct tsunami signal. In this study, we aim to find a source model of the tsunami-generating earthquake and quantify the pre-seismic magma overpressure within the caldera’s magma reservoir. Based on the earthquake’s atypical focal mechanism and efficient tsunami generation, we hypothesize that submarine trapdoor faulting occurred due to highly pressurized magma. To investigate this hypothesis, we establish a mechanical earthquake model that links pre-seismic magma overpressure to the size of the resulting trapdoor faulting, by considering stress interaction between a ring-fault system and a reservoir of the caldera. The model reproduces the observed tsunami waveform data. Our estimates indicate trapdoor faulting with large fault slip occurred in the critically stressed submarine caldera accommodating pre-seismic magma overpressure of ~10 MPa. The model infers that the earthquake partially reduced magma overpressure by 10–20%, indicating that the magmatic system maintained high stress levels even after the earthquake. Due to limited data, uncertainties persist, and alternative source geometries of trapdoor faulting could lead to estimate variations. These results suggest that magmatic systems beneath calderas are influenced much by intra-caldera fault systems. Monitoring and investigation of volcanic tsunamis and earthquakes help to obtain quantitative insights into submarine volcanism hidden under the ocean.

Keisuke Yoshida

and 5 more

Stress accumulation and release in the crust remains poorly understood compared to that at the plate boundaries. Spatiotemporal variations in foreshock and aftershock activities can provide key constraints on time-dependent stress and deformation processes in the crust. The 2017 M5.2 Akita-Daisen intraplate earthquake in NE Japan was preceded by intense foreshock activity and triggered a strong sequence of aftershocks. We examine the spatiotemporal distributions of foreshocks and aftershocks and determine the coseismic slip distribution of the mainshock. Our results indicate that seismicity both before and after the mainshock was concentrated on a planar structure with N-S strike that dips steeply eastward. We observe a migration of foreshocks towards the mainshock rupture area, suggesting that foreshocks were triggered by aseismic phenomena preceding the mainshock. The mainshock rupture propagated toward the north, showing less slip beneath foreshock regions. The stress drop of the mainshock was 1.4 MPa and the radiation efficiency was 0.72. Aftershocks were intensely triggered near the edge of large coseismic slip regions where shear stress increased. The aftershock region expanded along the fault strike, which is attributed to the post-seismic aseismic slip of the mainshock. The postseismic slip possibly triggered repeating earthquakes with M ~3. We find that the foreshocks, mainshock, aftershocks, and post-seismic slip released stress at different segments along the fault, which may reflect differences in frictional properties. Obtained results were similar to those observed for interplate earthquakes, which supports the hypothesis that the deformation processes along plate boundaries and crustal faults are fundamentally the same.

Lauren S. Abrahams

and 4 more

From interpreting data to scenario modeling of subduction events, numerical modeling has been crucial for studying tsunami generation by earthquakes. Seafloor instruments in the source region feature complex signals containing a superposition of seismic, ocean acoustic, and tsunami waves. Rigorous modeling is required to interpret these data and use them for tsunami early warning. However, previous studies utilize separate earthquake and tsunami models, with one-way coupling between them and approximations that might limit the applicability of the modeling technique. In this study, we compare four earthquake-tsunami modeling techniques, highlighting assumptions that affect the results, and discuss which techniques are appropriate for various applications. Most techniques couple a 3D Earth model with a 2D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and that tsunami propagation is negligible over the earthquake duration leads to technique (1), which equates earthquake seafloor uplift to initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow technique (2), which uses time-dependent earthquake seafloor velocity as a time-dependent forcing in the tsunami mass balance. Neither technique captures ocean acoustic waves, motivating newer techniques that capture the seismic and ocean acoustic response as well as tsunamis. Saito et al. (2019) propose technique (3), which solves the 3D elastic and acoustic equations to model the earthquake rupture, seismic wavefield, and response of a compressible ocean without gravity. Then, sea surface height is used as a forcing term in a tsunami simulation. A superposition of the earthquake and tsunami solutions provides the complete wavefield, with one-way coupling. The complete wavefield is also captured in technique (4), which utilizes a fully-coupled solid Earth and ocean model with gravity (Lotto & Dunham, 2015). This technique, recently incorporated into the 3D code SeisSol, simultaneously solves earthquake rupture, seismic waves, and ocean response (including gravity). Furthermore, we show how technique (3) follows from (4) subject to well-justified approximations.

Tatsuhiko Saito

and 4 more