Water resources systems models enable valuable inferences on consequential system stressors by representing both the geophysical processes determining the movement of water, and the human elements distributing it to its various competing uses. This study contributes a diagnostic evaluation framework that pairs exploratory modeling with global sensitivity analysis to enhance our ability to make inferences on water scarcity vulnerabilities in institutionally complex river basins. Diagnostic evaluation of models representing institutionally complex river basins with many stakeholders poses significant challenges. First, it needs to exploit a large and diverse suite of simulations to capture important human-natural system interactions as well as institutionally-aware behavioral mechanisms. Second, it needs to have performance metrics that are consequential and draw on decision-relevant model outputs that adequately capture the multi-sector concerns that emerge from diverse basin stakeholders. We demonstrate the proposed model diagnostic framework by evaluating how potential interactions between changing hydrologic conditions and human demands influence the frequencies and durations of water shortages of varying magnitudes experienced by hundreds of users in a sub-basin of the Colorado river. We show that the dominant factors shaping these effects vary both across users and, for an individual user, across percentiles of shortage magnitude. These differences hold even for users sharing diversion locations, demand levels or water right seniority. Our findings underline the importance of detailed institutional representation for such basins, as institutions strongly shape how dominant factors of stakeholder vulnerabilities propagate through the complex network of users.

Julianne Quinn

and 3 more

Planning under deep uncertainty, when probabilistic characterizations of the future are unknown, is a major challenge in water resources management. Many planning frameworks advocate for “scenario-neutral” analyses in which alternative policies are evaluated over plausible future scenarios with no assessment of their likelihoods. Instead, these frameworks use sensitivity analysis to discover which uncertain factors have the greatest influence on performance. This knowledge can be used to design monitoring programs and adaptive policies that respond to changes in the critical uncertainties. However, scenario-neutral analyses make implicit assumptions about the range and independence of the uncertain factors that may not be consistent with the coupled human-hydrologic processes influencing the system. These assumptions could influence which factors are found to be most important and which policies most robust. Consequently, the assumptions of uniformity and independence could have decision-relevant implications. This study illustrates these implications using a multi-stakeholder planning problem within the Colorado River Basin, where hundreds of rights-holders vie for the river’s limited water under the law of prior appropriations. Variance-based sensitivity analyses are performed to assess users’ vulnerabilities to changing hydrologic conditions using four experimental designs: 1) scenario-neutral samples of hydrologic factors, centered on recent historical conditions, 2) scenarios informed by climate projections, 3) scenarios informed by paleo-hydrologic reconstructions, and 4) scenario-neutral samples of hydrologic factors spanning all previous experimental designs. Differences in sensitivities and user robustness rankings across the experiments illustrate the challenges of inferring the most consequential drivers of vulnerabilities to design effective monitoring programs and robust management policies.