The Energetic Particle Detector (EPD) onboard Solar Orbiter is a suite of multiple sensors (Suprathermal Electrons Protons, STEP; Suprathermal Ion Spectrograph, SIS; Electron Proton Telescope, EPT; High Energy Telescope, HET), which measures particle intensities over a wide range of energies (from suprathermal to relativistic energies) and for different species (electron, protons, and heavy ions) in different directions. The EPD data center (http://espada.uah.es/epd) offers a primer venue to inspect the Solar Energetic Particle (SEP) activity, both to promptly check the most recent solar activity using quicklook plots based on low-latency data sets, and to perform deeper studies with data validated for scientific use. Among others, a series of plots and relevant information, such as the spacecraft maneuvers or sensor updates, are provided to the community. This facility gives access to all the data from the EPD sensors (which can be also found in the Solar Orbiter Archive), including Level 2 (calibrated) as well as more elaborated Level 3 data in the near future, which have further processing. An application programming interface (API) is also offered for accessing EPD data. Besides, during the first year and a half of observations, Solar Orbiter has completed three orbits, and EPD has measured several increases in particle fluxes, due to heliospheric and solar-origin events. Some of the events have been analysed and the flux enhancements have been tagged for future studies. This work aims to let the community know the availability of the instrument data products, and to explain how to properly use the provided data products and plots, as well as to summarise all the available studies published until now.

David Blewett

and 18 more

NASA designated Reiner Gamma (RG) as the landing site for the first Payloads and Research Investigations on the Surface of the Moon (PRISM) delivery (dubbed PRISM-1a). Reiner Gamma is home to a magnetic anomaly, a region of magnetized crustal rocks. The RG magnetic anomaly is co-located with the type example of a class of irregular high-reflectance markings known as lunar swirls. RG is an ideal location to study how local magnetic fields change the interaction of an airless body with the solar wind, producing stand-off regions that are described as mini-magnetospheres. The Lunar Vertex mission, selected by NASA for PRISM-1a, has the following major goals: 1) Investigate the origin of lunar magnetic anomalies; 2) Determine the structure of the mini-magnetosphere that forms over the RG magnetic anomaly; 3) Investigate the origin of lunar swirls; and 4) Evaluate the importance of micrometeoroid bombardment vs. ion/electron exposure in the space weathering of silicate regolith. The mission goals will be accomplished by the following payload elements. The lander suite includes: The Vertex Camera Array (VCA), a set of fixed-mounted cameras. VCA images will be used to (a) survey landing site geology, and (b) perform photometric modeling to yield information on regolith characteristics. The Vector Magnetometer-Lander (VML) is a fluxgate magnetometer. VML will operate during descent and once on the surface to measure the in-situ magnetic field. Sophisticated gradiometry allows for separation of the natural field from that of the lander. The Magnetic Anomaly Plasma Spectrometer (MAPS) is a plasma analyzer that measures the energy, flux, and direction of ions and electrons. The lander will deploy a rover that conducts a traverse reaching ≥500 m distance, obtaining spatially distributed measurements at locations outside the zone disturbed by the lander rocket exhaust. The rover will carry two instruments: The Vector Magnetometer-Rover (VMR) is an array of miniature COTS magnetometers to measure the surface field. The Rover Multispectral Microscope (RMM) will collect images in the wavelength range ~0.34–1.0 um. RMM will reveal the composition, texture, and particle-size distribution of the regolith.

Radoslav Bucik

and 16 more

Flare suprathermal ions with enhanced 3He and heavy-ion abundances are an essential component of the seed population accelerated by CME-driven shocks in gradual solar energetic particle (GSEP) events. However, the mechanisms through which CME-driven shocks gain access to flare suprathermals and produce spectral and abundance variations in GSEP events remain largely unexplored. We report two recent GSEP events: one observed by Solar Orbiter on 2020 Nov 24 (the first GSEP event on Solar Orbiter) and the other by ACE on 2021 May 29 (the most intense GOES proton event in the present solar cycle). The events were preceded by impulsive SEP (ISEP) events. Abundances and energy spectra are markedly different in the examined events at < 1 MeV/nucleon. For example, in the May event, Fe/O is typical of ISEP events, a factor of 100 to 10 higher than Fe/O in the November event. 3He abundance in the November event is high, typical of ISEP events, while in the May event, it is much lower, though finite. The May event shows a hard 4He spectrum with a power-law index of −1.6, and the November event a soft spectrum with an index of −3.5. The events were associated with halo CMEs with speeds around 900 km/s. The November event was also measured by Parker Solar Probe and the May event by STEREO-A and Solar Orbiter. This paper discusses the origin of vastly different abundances and spectral shapes in terms of variable remnant population from preceding ISEP events. Furthermore, we discuss a possible direct contribution from parent flares.