Sophie Teichmann

and 3 more

The properties of the solar wind represent a mixture of indicators for solar origin and transport effects. Both are of interest for the understanding of heliophysics and space weather effects. Most available solar wind classifications focus on the solar origin, in part based on transport effected properties. We aim to identify the solar wind properties that are most important for solar wind classification. We select seven solar wind properties: proton density, proton speed, proton temperature, absolute magnetic field strength, proton-proton collisional age, the ratio between the densities of O6+ and O7+ and the mean charge state of Fe. We apply an unsupervised machine learning method, k-means, to each subset of the these parameters and compare the results to a reference case based on all seven solar wind properties. Two scenarios are considered which provide a simple and a detailed solar wind classification, respectively. We identified the proton density as the most important solar wind property for solar wind classification. Furthermore, we found that charge state composition is important to accurately identify the solar source region. This holds for the simple case of three solar wind types but is even more important for a more detailed classification. In comparison to proton density and proton temperature, the solar wind speed turns out to be a less influential property. Our results underscore the importance of highly accurate measurements, in particular for proton density, proton temperature and the charge state composition.
The Energetic Particle Detector (EPD) onboard Solar Orbiter is a suite of multiple sensors (Suprathermal Electrons Protons, STEP; Suprathermal Ion Spectrograph, SIS; Electron Proton Telescope, EPT; High Energy Telescope, HET), which measures particle intensities over a wide range of energies (from suprathermal to relativistic energies) and for different species (electron, protons, and heavy ions) in different directions. The EPD data center (http://espada.uah.es/epd) offers a primer venue to inspect the Solar Energetic Particle (SEP) activity, both to promptly check the most recent solar activity using quicklook plots based on low-latency data sets, and to perform deeper studies with data validated for scientific use. Among others, a series of plots and relevant information, such as the spacecraft maneuvers or sensor updates, are provided to the community. This facility gives access to all the data from the EPD sensors (which can be also found in the Solar Orbiter Archive), including Level 2 (calibrated) as well as more elaborated Level 3 data in the near future, which have further processing. An application programming interface (API) is also offered for accessing EPD data. Besides, during the first year and a half of observations, Solar Orbiter has completed three orbits, and EPD has measured several increases in particle fluxes, due to heliospheric and solar-origin events. Some of the events have been analysed and the flux enhancements have been tagged for future studies. This work aims to let the community know the availability of the instrument data products, and to explain how to properly use the provided data products and plots, as well as to summarise all the available studies published until now.

Jingnan Guo

and 4 more

In preparation for future human habitats on Mars, it is important to understand the Martian radiation environment. Mars does not have an intrinsic magnetic field and Galactic cosmic ray (GCR) particles may directly propagate through and interact with its atmosphere before reaching the surface and subsurface of Mars. However, Mars has many high mountains and low-altitude craters where the atmospheric thickness can be more than 10 times different from one another. We thus consider the influence of the atmospheric depths on the Martian radiation levels including the absorbed dose, dose equivalent and body effective dose rates induced by GCRs at varying heights above and below the Martian surface. The state-of-the-art Atmospheric Radiation Interaction Simulator (AtRIS) based on GEometry And Tracking (GEANT4) Monte Carlo method has been employed for simulating particle interactions with the Martian atmosphere and terrain. We find that higher surface pressures can effectively reduce the heavy ion contribution to the radiation, especially the biologically weighted radiation quantity. However, enhanced shielding (both by the atmosphere and the subsurface material) can considerably enhance the production of secondary neutrons which contribute significantly to the effective dose. In fact, both neutron flux and effective dose peak at around 30 cm below the surface. This is a critical concern when using the Martian surface material to mitigate radiation risks. Based on the calculated effective dose, we finally estimate some optimized shielding depths, under different surface pressures (corresponding to different altitudes) and various heliospheric modulation conditions. This may serve for designing future Martian habitats.

Radoslav Bucik

and 16 more

Flare suprathermal ions with enhanced 3He and heavy-ion abundances are an essential component of the seed population accelerated by CME-driven shocks in gradual solar energetic particle (GSEP) events. However, the mechanisms through which CME-driven shocks gain access to flare suprathermals and produce spectral and abundance variations in GSEP events remain largely unexplored. We report two recent GSEP events: one observed by Solar Orbiter on 2020 Nov 24 (the first GSEP event on Solar Orbiter) and the other by ACE on 2021 May 29 (the most intense GOES proton event in the present solar cycle). The events were preceded by impulsive SEP (ISEP) events. Abundances and energy spectra are markedly different in the examined events at < 1 MeV/nucleon. For example, in the May event, Fe/O is typical of ISEP events, a factor of 100 to 10 higher than Fe/O in the November event. 3He abundance in the November event is high, typical of ISEP events, while in the May event, it is much lower, though finite. The May event shows a hard 4He spectrum with a power-law index of −1.6, and the November event a soft spectrum with an index of −3.5. The events were associated with halo CMEs with speeds around 900 km/s. The November event was also measured by Parker Solar Probe and the May event by STEREO-A and Solar Orbiter. This paper discusses the origin of vastly different abundances and spectral shapes in terms of variable remnant population from preceding ISEP events. Furthermore, we discuss a possible direct contribution from parent flares.