Christine McCarthy

and 2 more

Basal slip along glaciers and ice streams can be significantly modified by external time-dependent forcing, although it is not clear why some systems are more sensitive to tidal stresses. We have conducted a series of laboratory experiments to explore the effect of time varying load point velocity on ice-on-rock friction. Varying the load point velocity induces shear stress forcing, making this an analogous simulation of aspects of ice stream tidal modulation. Ambient pressure, double-direct shear experiments were conducted in a cryogenic servo-controlled biaxial deformation apparatus at temperatures between -2°C and -16°C. In addition to a background, median velocity (1 and 10 μm/s), a sinusoidal velocity was applied to the central sliding sample over a range of periods and amplitudes. Normal stress was held constant over each run (0.1, 0.5 or 1 MPa) and the shear stress was measured. Over the range of parameters studied, the full spectrum of slip behavior from creeping to slow-slip to stick-slip was observed, similar to the diversity of sliding styles observed in Antarctic and Greenland ice streams. Under conditions in which the amplitude of oscillation is equal to the median velocity, significant healing occurs as velocity approaches zero, causing a high-amplitude change in friction. The amplitude of the event increases with increasing period (i.e. hold time). At high normal stress, velocity oscillations force an otherwise stable system to behave unstably, with consistently-timed events during every cycle. Rate-state friction parameters determined from velocity steps show that the ice-rock interface is velocity strengthening. A companion paper describes a method of analyzing the oscillatory data directly. Forward modeling of a sinusoidally-driven slider block, using rate-and-state dependent friction formulation and experimentally derived parameters, successfully predicts the experimental output in all but a few cases.

Jenna Everard

and 9 more

Creeping faults are typically not associated with large earthquakes. However, new K/Ar dating and biomarker maturity data on the San Andreas Fault Observatory at Depth (SAFOD) present evidence that large paleoearthquakes have occurred in the creeping section of the San Andreas Fault, California. K/Ar ages of bulk samples with evidence of coseismic heating range from 3.3 to 15.8 Ma, and argon diffusion experiments suggest that these ages are only partially reset and the actual event ages may be even younger. Thus, questions remain as to how we can refine such dates to reveal the precise age and location of these earthquakes. To refine the ages and more accurately assess seismic hazard, we date size separates of eight samples from different sections of the SAFOD core. Following Stokes’ Law, we split each sample into five size fractions using hydrodynamic settling: <0.2, 0.2-0.5, 0.5-0.8, 0.8-1.4, and 1.4-2 micrometers. The finest size fractions contain the most authigenic illite, which form during fault slip. We determined chemical composition and separated illite polytypes using x-ray diffraction, and also measured K/Ar ages on each sample. Preliminary results from two scaly black fault rock samples, previously shown to have hosted earthquakes, (3,193.69 m and 3,193.96 m along the core) support that the finest size fractions contain the greatest ratio of authigenic illite. With a York regression between age and detrital illite abundance, we place the authigenic illite ages at 1.08 ± 2.40 Ma and 0.88 ± 5.08 Ma for these two samples, and observe that the detrital illite matches the late Cretaceous age for the country rock. This new age estimate for the authigenic illite means that large earthquakes must have propagated into the creeping section within the last million years. Not only is it significantly younger than the bulk sample age, it is recent enough that translation of faulted material from the locked southern San Andreas fault into the creeping section cannot explain the record. Moving forward, we will expand our procedure to include isotope dilution for measuring K concentration and analyze the other samples previously measured for biomarker maturity and bulk K/Ar age. Resulting insights into the fault rock composition and the timing of past earthquakes will be crucial in assessing the region’s seismic hazard.

Rob M. Skarbek

and 2 more

Rate and state frictional parameters are typically determined using two types of experimental protocols: velocity steps and slide-hold-slide events. Here we take a new approach by examining the frictional response to controlled, harmonic oscillations in load point velocity. We present a Matlab graphical user interface software package, called RSFitOSC, that allows users to easily determine frictional parameters by fitting oscillation events using the rate and state friction equations. We apply our new methods to a set of ice-rock friction experiments conducted over a temperature range of -16.4°C to -2°C, and described in a companion paper: McCarthy et al. (In Review). Values of the frictional stability parameter (a-b) determined from oscillations reveal dominantly velocity-weakening behavior across the entire range of experimental conditions. However, values of (a-b) determined from velocity steps in the same experiments yield velocity-strengthening behavior. We also show that the elastic stiffness of the ice-rock system depends on the temperature, and is unlikely to be explained by changes in the elastic properties of ice. Load point velocity oscillations induce oscillations in applied shear stress. Many natural fault systems exhibit slip behaviors that depend on harmonic oscillations in applied tidal stresses. Our new method provides a way to study how frictional properties directly depend on parameters relevant to tidal forcing, and how oscillatory loading must be considered when extracting friction parameters.