Souhail Dahani

and 11 more

Fundamental processes in plasmas act to convert energies into different forms, e.g., electromagnetic, kinetic and thermal. Direct derivation from the Valsov-Maxwell equation yields sets of equations that describe the temporal evolution of the magnetic, kinetic and internal energies in either the monofluid or multifluid frameworks. In this work we focus on the main terms that affect the changes in the kinetic energy. These are pressure gradient-related terms and electromagnetic terms. The former account for plasma acceleration or deceleration from a pressure gradient, while the latter from an electric field. The overall balance between these terms is fundamental to ensure the conservation of energy and momentum. We use in-situ observations from the Magnetospheric MultiScale (MMS) mission to study the relationship between these terms. We perform a statistical analysis of those parameters in the context of magnetic reconnection by focusing on small-scale Electron Diffusion Regions and large-scale Flux Transfer Events. The analysis reveals a correlation between the two terms in the monofluid force balance, and in the ion force and energy balance. However, the expected relationship cannot be verified from electron measurements. Generally, the pressure gradient related terms are smaller than their electromagnetic counterparts. We perform an error analysis to quantify the expected underestimation of gradient values as a function of the spacecraft separation compared to the gradient scale. Our findings highlight that MMS is capable of capturing energy and force balance for the ion fluid, but that care should be taken for energy conversion terms based on electron pressure gradients.

Masaki N Nishino

and 9 more

The near-Earth plasma sheet becomes cold and dense under northward interplanetary magnetic field (IMF) condition, which suggests efficient solar wind plasma entry into the magnetosphere across the magnetopause for northward IMF and a possible contribution of ionospheric oxygen ion outflow. The cold and dense characteristics of the plasma sheet are more evident in the magnetotail flank regions that are the interface between cold solar wind plasma and hot magnetospheric plasma. Several physical mechanisms have been proposed to explain the solar wind plasma entry across the magnetopause and resultant formation of the cold-dense plasma sheet (CDPS) in the tail flank regions. However, the transport path of the cold-dense plasma inside the magnetotail has not been understood yet. Here we present a case study of the CDPS in the dusk magnetotail by Magnetospheric Multiscale (MMS) spacecraft under strongly northward IMF and high-density solar wind conditions. The ion distribution function consists of high- and low-energy components, and the low-energy one intermittently shows energy dispersion in the directions parallel and anti-parallel to the local magnetic field. The time-of-flight analysis of the energy-dispersed low-energy ions suggests that these ions originate in the region farther down the tail, move along the magnetic field toward the ionosphere and then come back to the magnetotail by the mirror reflection. The pitch-angle dispersion analysis gives consistent results on the traveling time and path length of the energy-dispersed ions. Based on these observations, we discuss possible generation mechanisms of the energy-dispersed structure of the low-energy ions during the northward IMF.

Hiroshi Hasegawa

and 21 more

We present observations in Earth’s magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard collisionless reconnection, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.