Souhail Dahani

and 11 more

Fundamental processes in plasmas act to convert energies into different forms, e.g., electromagnetic, kinetic and thermal. Direct derivation from the Valsov-Maxwell equation yields sets of equations that describe the temporal evolution of the magnetic, kinetic and internal energies in either the monofluid or multifluid frameworks. In this work we focus on the main terms that affect the changes in the kinetic energy. These are pressure gradient-related terms and electromagnetic terms. The former account for plasma acceleration or deceleration from a pressure gradient, while the latter from an electric field. The overall balance between these terms is fundamental to ensure the conservation of energy and momentum. We use in-situ observations from the Magnetospheric MultiScale (MMS) mission to study the relationship between these terms. We perform a statistical analysis of those parameters in the context of magnetic reconnection by focusing on small-scale Electron Diffusion Regions and large-scale Flux Transfer Events. The analysis reveals a correlation between the two terms in the monofluid force balance, and in the ion force and energy balance. However, the expected relationship cannot be verified from electron measurements. Generally, the pressure gradient related terms are smaller than their electromagnetic counterparts. We perform an error analysis to quantify the expected underestimation of gradient values as a function of the spacecraft separation compared to the gradient scale. Our findings highlight that MMS is capable of capturing energy and force balance for the ion fluid, but that care should be taken for energy conversion terms based on electron pressure gradients.

Souhail Dahani

and 15 more

Flux Transfer Events (FTEs) are transient magnetic flux ropes typically found at the Earth’s magnetopause on the dayside. While it is known that FTEs are generated by magnetic reconnection, it remains unclear how the details of magnetic reconnection controls their properties. A recent study showed that the helicity sign of FTEs positively correlates with the east-west (By) component of the Interplanetary Magnetic Field (IMF). With data from the Cluster and Magnetospheric Multiscale missions, we performed a statistical study of 166 quasi force-free FTEs. We focus on their helicity sign and possible association with upstream solar wind conditions and local magnetic reconnection properties. Using both in situ data and magnetic shear modeling, we find that FTEs whose helicity sign corresponds to the IMF By are associated with moderate magnetic shears while those that does not correspond to the IMF By are associated with higher magnetic shears. While uncertainty in IMF propagation to the magnetopause may lead to randomness in the determination of the flux rope core field and helicity, we rather propose that for small IMF By, which corresponds to high shear and low guide field, the Hall pattern of magnetic reconnection determines the FTE core field and helicity sign. In that context we explain how the temporal sequence of multiple X-line formation and the reconnection rate are important in determining the flux rope helicity sign. This work highlights a fundamental connection between kinetic processes at work in magnetic reconnection and the macroscale structure of FTEs.