Sofya Guseva

and 16 more

The drag coefficient (CDN), Stanton number (CHN) and Dalton number (CEN) are of particular importance for the bulk estimation of the surface turbulent fluxes of momentum, heat and water vapor at water surfaces. Although these bulk transfer coefficients have been extensively studied over the past several decades mainly in marine and large-lake environments, there are no studies focusing on their synthesis for many lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy-covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that generally CDN, CHN, CEN (adjusted to neutral atmospheric stability) were within the range reported in previous studies for large lakes and oceans. CHN was found to be on average a factor of 1.4 higher than CEN for all wind speeds, therefore, likely affecting the Bowen ratio method used for lake evaporation measurements. All bulk transfer coefficients exhibit substantial increase at low wind speeds (< 3 m s-1), which could not be explained by any of the existing physical approaches. However, the wind gustiness could partially explain this increase. At high wind speeds CDN, CHN, CEN remained relatively constant at values of 2 10-3, 1.5 10-3, 1.1 10 -3, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area or wind fetch. The empirical formula C=b1[1+b2exp(b3 U10)] described the dependence of CDN, CHN, CEN on wind speed well and it could be beneficial for modeling when coupling atmosphere and lakes.

Sofya Guseva

and 13 more

Inland waters, such as lakes, reservoirs and rivers, are important sources of greenhouse gases to the atmosphere. A key parameter that regulates the gas exchange between water and the atmosphere is the gas transfer velocity, which itself is controlled by near-surface turbulence in the water. While in lakes and reservoirs, near-surface turbulence is mainly driven by atmospheric forcing, in shallow rivers and streams it is generated by flow-induced bottom friction. Large rivers represent a transition between these two cases. Near-surface turbulence has rarely been observed in rivers and the drivers of turbulence have not been quantified. We obtained continuous measurements of flow velocity and fluctuations from which we quantified turbulence, as the rate of dissipation of turbulent kinetic energy ($\varepsilon$) over the ice-free season in a large regulated river in Northern Finland. Atmospheric forcing was observed simultaneously. Measured values of $\varepsilon$ were well predicted from bulk parameters, including mean flow velocity, wind speed, surface heat flux and a one-dimensional numerical turbulence model. Values ranged from $\sim 10^{-9}$ m$^2$ s$^{-3}$ to $10^{-5}$ m$^2$ s$^{-3}$. Atmospheric forcing and river flow contributed to near-surface turbulence a similar fraction of the time, with variability in near-surface dissipation rate occurring at diel time scales, when the flow velocity was strongly affected by downstream dam operation. By combining scaling relations for boundary-layer turbulence at the river bed and at the air-water interface, we derived a simple model for estimating the relative contributions of wind speed and bottom friction in rivers as a function of flow depth.