Adam Jacob Hawkins

and 4 more

Identifying fluid flow maldistribution in planar geometries is a well-established problem in subsurface science/engineering. Of particular importance to the thermal performance of Engineered (or “Enhanced”) Geothermal Systems (EGS) is identifying the existence of non-uniform (i.e., heterogeneous) permeability and subsequently predicting advective heat transfer. Here, machine learning via a Genetic Algorithm (GA) identifies the spatial distribution of an unknown permeability field in a two-dimensional Hele-Shaw geometry (i.e., parallel-plates). The inverse problem is solved by minimizing the L2-norm between simulated Residence Time Distribution (RTD) and measurements of an inert tracer breakthrough curve (BTC) (C-Dot nanoparticle). Principal Component Analysis (PCA) of spatially-correlated permeability fields enabled reduction of the parameter space by more than a factor of ten and restricted the inverse search to reservoir-scale permeability variations. Thermal experiments and tracer tests conducted at the mesoscale Altona Field Laboratory (AFL) demonstrate that the method accurately predicts the effects of extreme flow channeling on heat transfer in a single bedding-plane rock fracture. However, this is only true when the permeability distributions provide adequate matches to both tracer RTD and frictional pressure loss. Without good agreement to frictional pressure loss, it is still possible to match a simulated RTD to measurements, but subsequent predictions of heat transfer are grossly inaccurate. The results of this study suggest that it is possible to anticipate the thermal effects of flow maldistribution, but only if both simulated RTDs and frictional pressure loss between fluid inlets and outlets are in good agreement with measurements.

Matthew W Becker

and 2 more

Distributed Acoustic Sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hertz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than one nanometer were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO sequestration, and remediation of groundwater in fractured bedrock.