Vicki Knoer

and 4 more

Soft x-ray and EUV radiation from the Sun is absorbed by and ionizes the atmosphere, creating both the ionosphere and thermosphere. Temporal changes in irradiance energy and spectral distribution can have drastic impacts on the ionosphere, impacting technologies such as satellite drag and radio communication. Because of this, it is necessary to estimate and predict changes in Solar EUV spectral irradiance. Ideally, this would be done by direct measurement but the high cost of solar EUV spectrographs makes this prohibitively expensive. Instead, scientists must use data driven models to predict the solar spectrum for a given irradiance measurement. In this study, we further develop the Synthetic Reference Spectral Irradiance Model (SynRef). The SynRef model, which uses broadband EUV irradiance data from EUVM at Mars, was created to mirror the SORCE XPS model which uses data from the TIMED SEE instrument and the SORCE XPS instrument at Earth. Both models superpose theoretical Active Region and Quiet Sun spectra generated by CHIANTI to match daily measured irradiance data, and output a modeled solar EUV spectrum for that day. By adjusting the weighting of Active Region and Quiet Sun spectra, we update the SynRef model to better agree with the FISM model and with spectral data collected from sounding rocket flights. We also use the broadband EUVM measurements to estimate AR temperature. This will allow us to select from a library of AR reference spectra with different temperatures. We present this updated SynRef model to more accurately characterize the Solar EUV and soft x-ray spectra.

Odele Coddington

and 8 more

A wide variety of research applications require knowledge of total solar irradiance (TSI) and solar spectral irradiance (SSI) on time scales from minutes to centuries. The current satellite data record of TSI and ultraviolet SSI is 40 years long while observations of solar irradiance at visible wavelengths through the near-infrared span 15 years. In late 2017, the NASA Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) mission was deployed on the International Space Station (ISS); these new TSI and SSI datasets are now extending the observational solar irradiance record with a planned 5-year mission. Recognizing the need for ongoing specification of solar irradiance, the National Centers for Environmental Information established the Solar Irradiance Climate Data Record (CDR) in 2014. The CDR includes a composite record of TSI observations and estimates of solar total and spectral irradiance variations during, and prior, to the space-based record based on the Naval Research Laboratory (NRL) models. Utilizing as inputs proxies of sunspot darkening and facular brightening, the models specify TSI and SSI annually since 1610 and daily since 1882. Both the observational composite and the model specifications are updated regularly and will eventually utilize the new TSIS-1 observations, both to extend the observational composite and to validate and improve the models. With the goal of establishing the utility of the NRL models in specifying the time and wavelength dependence of solar variability for the Solar Irradiance CDR, we compare the latest NRLTSI2 and NRLSSI2 modeled irradiances with observations, including composite records, and with independent models of solar irradiance variability. Our assessments quantify current understanding of solar irradiance variability on multiple timescales and identify areas where TSIS-1 observations are expected to provide improved understanding of solar irradiance variability. We use the following datasets in our comparisons: TSIS-1, Solar Radiation and Climate Experiment (SORCE), Ozone Monitoring Instrument (OMI), Solar Irradiance Data Exploitation (SOLID), Spectral and Total Irradiance Reconstructions for the Satellite Era (SATIRE-S), a three-dimensional extension of the SATIRE-S model (SATIRE-3D), and Empirical Irradiance Reconstruction (EMPIRE).

Thomas N. Woods

and 1 more

The solar spectral irradiance (SSI) data set is a key record for studying and understanding the energetics and radiation balance in Earth’s environment. Understanding the long-term variations of the SSI over time scales of the 11-year solar activity cycle and longer is critical for many Sun-climate research topics. There are satellite measurements of the SSI since the 1970s that contribute to understanding the solar variability over Solar Cycles (SC) 21 to 24, with most of these SSI measurements in the ultraviolet and only recently in the visible and near infrared for SC-23 and SC-24. A limiting factor for the accuracy of the previous results is the uncertainties for the instrument degradation corrections. Analyses of the past SSI data sets have identified some irradiance offsets and some small residual instrumental trends. These corrections are applied and then combined with a previous SSI composite data set, called the GSFCSSI2 composite, to provide a new SSI composite, called the LASP GSFC SSI #3 (or SSI3). This improved composite extends the wavelength coverage down to 0.5 nm and up to 1600 nm and the time coverage up to 2020. The solar variability results from the SSI3 are consistent, of course, with the observations from which are used to create the SSI3, but they do differ with some solar variability models, in particular at longer than 900 nm. The development of the SSI3 composite also clarifies the importance of overlapping missions for studying the 11-year solar activity cycle, particularly for wavelengths longer than 200 nm.
We present a new high resolution empirical model for the ionospheric total electron content (TEC). TEC data are obtained from the global navigation satellite system (GNSS) receivers with a 1 x 1 spatial resolution and 5 minute temporal resolution. The linear regression model is developed at 45N, 0E for the years 2000 - 2019 with 30 minute temporal resolution, unprecedented for typical empirical ionospheric models. The model describes dependency of TEC on solar flux, season, geomagnetic activity, and local time. Parameters describing solar and geomagnetic activity are evaluated. In particular, several options for solar flux input to the model are compared, including the traditionally used 10.7cm solar radio flux (F10.7), the Mg II core-to-wing ratio, and formulations of the solar extreme ultraviolet flux (EUV). Ultimately, the extreme ultraviolet flux presented by the Flare Irradiance Spectral Model, integrated from 0.05 to 105.05 nm, best represents the solar flux input to the model. TEC time delays to this solar parameter on the order of several days as well as seasonal modulation of the solar flux terms are included. The Ap_3 index and its history are used to reflect the influence of geomagnetic activity. The root mean squared error of the model (relative to the mean TEC observed in the 30-min window) is 1.9539 TECu. A validation of this model for the first three months of 2020 shows excellent agreement with data. The new model shows significant improvement over the International Reference Ionosphere 2016 (IRI-2016) when the two are compared during 2008 and 2012.

Vicki Knoer

and 4 more

Soft x-ray and EUV radiation from the Sun is absorbed by and ionizes the atmosphere, creating both the ionosphere and thermosphere. Temporal changes in irradiance energy and spectral distribution can have profound impacts on the ionosphere, impacting technologies such as satellite drag and radio communication. Because of this, it is necessary to estimate and predict changes in Solar EUV spectral irradiance. Ideally, this would be done by direct measurement but the high cost of solar EUV spectrographs makes this prohibitively expensive. Instead, scientists must use data driven models to predict the solar spectrum for a given irradiance measurement. In this study, we further develop the Synthetic Reference Spectral Irradiance Model (SynRef). The SynRef model, which uses broadband EUV irradiance data from the MAVEN EUVM at Mars, was created to mirror the SORCE XPS model which uses data from the TIMED SEE instrument and the SORCE XPS instrument at Earth. Both models superpose theoretical Active Region and Quiet Sun spectra generated by CHIANTI to match daily measured irradiance data, and output a modeled solar EUV spectrum for that day. We use the broadband EUVM measurements to estimate Active Region temperature. This will allow us to select from a library of AR reference spectra with different temperatures. We also investigate how the prevalence of solar minimum coronal holes affects our measurements and how to account for them. We present this updated SynRef model to more accurately characterize the Solar EUV and soft x-ray spectra.