Carolin Winter

and 5 more

Runoff events play an important role for nitrate export from catchments, but the variability of nutrient export patterns between events and catchments is high and the dominant drivers remain difficult to disentangle. Here, we rigorously asses if detailed knowledge on runoff event characteristics can help to explain this variability. To this end, we conducted a long-term (1955 - 2018) event classification using hydro-meteorological data, including soil moisture, snowmelt and the temporal organization of rainfall, in six neighboring mesoscale catchments with contrasting land use types. We related these event characteristics to nitrate export patterns from high-frequency nitrate concentration monitoring (2013 - 2017) using concentration-discharge relationships. Our results show that small rainfall-induced events with dry antecedent conditions exported lowest nitrate concentrations and loads but exhibited highly variable concentration-discharge relationships. We explain this by a low fraction of active flow paths, revealing the spatial heterogeneity of nitrate sources within the catchments and by an increased impact of biogeochemical retention processes. In contrast, large rainfall or snowmelt-induced events exported highest nitrate concentrations and loads and converged to similar chemostatic export patterns across all catchments, without exhibiting source limitation. We explain these homogenous export patterns by high catchment wetness that activated a high number of flow paths. Long-term hydro-meteorological data indicated an increase of events with dry antecedent conditions in summer and decreased snow-influenced events. These trends will likely continue and lead to an increased nitrate concentration variability during low-flow seasons and to changes in the timing of largest nitrate export peaks during high-flow seasons.

Tam Van Nguyen

and 6 more

Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km²), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternates the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices.

Tam Van Nguyen

and 5 more

StorAge Selection (SAS) functions describe how catchments selectively remove water of different ages in storage via discharge, thus controlling the transit time distribution (TTD) and solute composition of discharge. SAS-based models have been emerging as promising tools for quantifying catchment-scale solute export, providing a coherent framework for describing both velocity and celerity driven transport. However, due to their application in headwaters only, the spatial heterogeneity of catchment physiographic characteristics, land-use management practices, and large-scale validation have not been adequately addressed with SAS-based models. In this study, we integrated SAS functions into the grid-based mHM-Nitrate model (mesoscale Hydrological Model) at both grid scale (distributed model) and catchment scale (lumped model). The proposed model provides a spatially distributed representation of nitrogen dynamics within the soil zone and a unified approach for representing both velocity and celerity driven subsurface transport below the soil zone. The model was tested in a heterogeneous mesoscale catchment. Simulated results show a strong spatial heterogeneity in nitrogen dynamics within the soil zone, highlighting the necessity of a spatially explicit approach for describing near-surface nitrogen processing. The lumped model could well capture instream nitrate concentration dynamics and the concentration-discharge relationship at the catchment outlet. In addition, the model could satisfactorily represent the relations between subsurface storage, mixing scheme, solute export, and the TTDs of discharge. The distributed model shows comparable results with the lumped model. Overall, the results reveal the potential for large-scale applications of SAS-based transport models, contributing to the understanding of water quality-related issues in agricultural landscapes.
Recent studies have demonstrated a direct relation between climate characteristics and vegetation in catchments. For example, plants appear to develop a root system that allows both optimal growth and resistance against region-specific droughts (Gao et al., 2014; Ho et al., 2005). As climatic conditions also affect the way catchments store and release water (i.e., the transit times), we expect a direct relation between vegetation and transit times. To test this hypothesis, we have established a dataset of water balance and stable water isotope data across more than 50 catchments in various climate zones, which will be further expanded over the course of the project. This dataset allows for determining root zone storage capacities and transit time metrics such as the young water fraction (Kirchner, 2016) across catchment scales and climate zones. We will present how transit time metrics vary as a function of root zone storage capacities and how this can be related to catchment and vegetation characteristics and climatic conditions. The results will help understand how changing vegetation cover due to climate and land use change might affect catchment water storage and release in future. We see a vast potential of isotope studies across diverse catchments. We are thus calling for a community effort to provide streamflow isotope data from previous work in a unified framework as a basis for further global analyses using stable water isotopes. Gao, H.; Hrachowitz, M.; Schymanski, S. J.; Fenicia, F.; Sriwongsitanon, N.; Savenije, H. H. G., Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters 2014, 41, 7916–7923, doi:10.1002/2014GL061668. Ho, M. D.; Rosas, J. C.; Brown, K. M.; Lynch, J. P., Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology 2005, 32, (8), 737-748. Kirchner, J. W., Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences 2016, 20, (1), 279-297.

Carolin Winter

and 5 more

Defining effective measures to reduce nitrate pollution in heterogeneous mesoscale catchments remains challenging if based on concentration measurements at the outlet only. One reason is our limited understanding of the sub-catchment contributions to nitrate export and their importance at different time scales. While upstream sub-catchments often disproportionally contribute to runoff generation and in turn to nutrient export, agricultural areas, which are typically found in downstream lowlands, are known to be a major source for nitrate pollution. To disentangle the interplay of these contrasting drivers of nitrate export, we analyzed seasonal long-term trends and event dynamics of nitrate concentrations, loads and the concentration-discharge relationship in three nested catchments within the Selke catchment (456 km²), Germany. The upstream sub-catchments (40.4 % of total catchment area, 34.5 % of N input) had short transit times and dynamic concentration-discharge relationships with elevated nitrate concentrations during wet seasons and events. Consequently, the upstream sub-catchments dominated nitrate export during high flow and disproportionally contributed to overall annual nitrate loads at the outlet (64 %). The downstream sub-catchment was characterized by higher N input, longer transit times and relatively constant nitrate concentrations between seasons, dominating nitrate export during low flow periods. Neglecting the disproportional role of upstream sub-catchments for temporally elevated nitrate concentrations and net annual loads can lead to an overestimation of the role of agricultural lowlands. Nonetheless, in agricultural lowlands, constantly high concentrations from nitrate legacies pose a long-term threat to water quality. This knowledge is crucial for an effective and site-specific water quality management.