Mei Li

and 9 more

Oppositely to a previous statistical work using a single time resolution of the total ion density measured onboard the DEMETER satellite, this work deals with statistical seismo-ionospheric influences by comparing different parameters and various time resolutions. The O+ density and electron density recorded by the CSES satellite for more than one year and by the DEMETER satellite for about 6.5 years have been utilized to globally search ionospheric perturbations with different time resolutions. A comparison is automatically done by software between the occurrence of these ionospheric perturbations determined by different data sets, and the occurrence of earthquakes under the conditions that these perturbations occur at less than 1500 km and up to 15 days before the earthquakes. Combined with statistical results given by both satellites, it is shown that the detection rate r of earthquakes increases as the data time resolution and the earthquake magnitude increase and as the focal depth decreases. On average, the number of perturbations is higher the day of the earthquake, and then smoothly decreases the days before, which is independent of either ionospheric parameters or time resolutions. The number of right alarms is high near the South Atlantic Magnetic Anomaly area but its relationship with seismic activities is weak. The ion density tends to be more sensitive to seismic activities than the electron density but this needs further investigations. This study shows that the CSES satellite could effectively register ionospheric perturbations due to strong EQs as the DEMETER satellite does.

Miroslav Hanzelka

and 3 more

Equatorial noise is an electromagnetic emission with line spectral structure, predominantly located in the vicinity of the geomagnetic equatorial plane at radial distances ranging from 2 to 8 Earth’s radii. Here we focus on the rare events of equatorial noise occurring at ionospheric altitudes during periods of strongly increased geomagnetic activity. We use multicomponent electromagnetic measurements from the entire 2004–2010 DEMETER spacecraft mission and present a statistical analysis of wave propagation properties. We show that, close to the Earth, these emissions experience a larger spread in latitudes than they would at large radial distances and that their wave normals can significantly deviate from the direction perpendicular to local magnetic field lines. These results are compared to ray tracing simulations, in which whistler mode rays with initially nearly perpendicular wave vectors propagate down to the low altitudes with wave properties corresponding to the observations. We perform nonlinear fitting of the simulated latitudinal distribution of incident rays to the observed occurrence and estimate the distribution of wave normal angles in the source. The assumed Gaussian distribution provides the best fit with a standard deviation of $2^{\circ}$ from the perpendicular direction. Ray tracing analysis further shows that small initial deviations from the meridional plane can rapidly increase during the propagation and result in deflection of the emissions before they can reach the altitudes of DEMETER.