Louise Busschaert

and 5 more

Irrigation is an important component of the terrestrial water cycle, but it is often poorly accounted for in models. Recent studies have attempted to integrate satellite data and land surface models via data assimilation (DA) to (1) detect and quantify irrigation, and (2) better model the related land surface variables such as soil moisture, vegetation, and evapotranspiration. In this study, different synthetic DA experiments are tested to advance satellite DA for the estimation of irrigation. We assimilate synthetic Sentinel-1 backscatter observations into the Noah-MP model coupled with an irrigation scheme. When updating soil moisture, we found that the DA sets better initial conditions to trigger irrigation in the model. However, large DA updates to wetter conditions can inhibit irrigation simulation. Building on this limitation, we propose an improved DA algorithm using a buddy check approach. The method still updates the land surface, but now the irrigation trigger is not based on the evolution of soil moisture, but on an adaptive innovation outlier detection. The new method was tested with different levels of model and observation error. For mild model and observation errors, the DA outperforms the model-only 14-day irrigation estimates by about 30% in terms of root-mean-squared differences, when frequent (daily or every other day) observations are available. The improvements can surpass 50% for high forcing errors. However, with longer observation intervals (7 days), the system strongly underestimates the irrigation amounts. The method is flexible and can be expanded to other DA systems and to a real world case.

Jonas Mortelmans

and 5 more

Current lightning predictions are uncertain because they either rely on empirical diagnostic relationships based on the present climate or use coarse-scale climate scenario simulations in which deep convection is parameterized. Previous studies demonstrated that simulations with convection-permitting resolutions (km-scale) improve lightning predictions compared to coarser-grid simulations using convection parameterization for different geographical locations but not over the boreal zone. In this study, lightning simulations with the NASA Unified-Weather Research and Forecasting (NU-WRF) model are evaluated over a 955x540 km2 domain including the Great Slave Lake in Canada for six lightning seasons. The simulations are performed at convection-parameterized (9 km) and convection-permitting (3 km) resolution using the Goddard 4ICE and the Thompson microphysics (MP) schemes. Four lightning indices are evaluated against observations from the Canadian Lightning Detection Network (CLDN), in terms of spatiotemporal frequency distribution, spatial pattern, daily climatology, and an event-based overall skill assessment. Concerning the model configuration, regardless of the spatial resolution, the Thompson scheme is superior to the Goddard 4ICE scheme in predicting the daily climatology but worse in predicting the spatial patterns of lightning occurrence. Several evaluation metrics indicate the benefit of working at a convection-permitting resolution. The relative performance of the different lightning indices depends on the evaluation criteria. Finally, this study demonstrates issues of the models to reproduce the observed spatial pattern of lightning well, which might be related to an insufficient representation of land surface heterogeneity in the study area.

Sebastian Apers

and 22 more

Tropical peatlands are among the most carbon-dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat-specific hydrology modules into a global LSM for the first time, by utilizing the peatland-specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). We developed literature-based parameter sets for natural (PEATCLSMTrop,Nat) and drained (PEATCLSMTrop,Drain) tropical peatlands. The operational CLSM version (which includes peat as a soil class) and PEATCLSMTrop,Nat were forced with global meteorological input data and evaluated over the major tropical peatland regions in Central and South America, the Congo Basin, and Southeast Asia. Evaluation against a unique and extensive data set of in situ water level and eddy covariance-derived evapotranspiration showed an overall improvement in bias and correlation over all three study regions. Over Southeast Asia, an additional simulation with PEATCLSMTrop,Drain was run to address the large fraction of drained tropical peatlands in this region. PEATCLSMTrop,Drain outperformed both CLSM and PEATCLSMTrop,Nat over drained sites. Despite the overall improvements of both tropical PEATCLSM modules, there are strong differences in performance between the three study regions. We attribute these performance differences to regional differences in accuracy of meteorological forcing data, and differences in peatland hydrologic response that are not yet captured by our model.