Ali Mashayek

and 4 more

It is well established that small scale cross-density (diapycnal) turbulent mixing induced by breaking of overturns in the interior of the ocean plays a significant role in sustaining the deep ocean circulation and in regulation of tracer budgets such as those of heat, carbon and nutrients. There has been significant progress in the fluid mechanical understanding of the physics of breaking internal waves. Connection of the microphysics of such turbulence to the larger scale dynamics, however, is significantly underdeveloped. We offer a hybrid theoretical-statistical approach, informed by observations, to make such a link. By doing so, we define a bulk flux coefficient, $\Gamma_B$, which represents the partitioning of energy available to an ‘ocean box’ (such as a grid cell of a coarse resolution climate model), from winds, tides, and other sources, into mixing and dissipation. $\Gamma_B$ depends on both the statistical distribution of turbulent patches and the flux coefficient associated with individual patches, $\Gamma_i$. We rely on recent parameterizations of ~$\Gamma_i$~ and the seeming universal characteristics of statistics of turbulent patches, to infer $\Gamma_B$, which is the essential quantity for representation of turbulent diffusivity in climate models. By applying our approach to climatology and global tidal estimates, we show that on a basin scale, energetic mixing zones exhibit moderately efficient mixing that induces significant vertical density fluxes, while quiet zones (with small background turbulence levels), although highly efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more energetic zones marks regions of intense upwelling and downwelling of deep waters. We suggest that such upwelling and downwelling may be stronger than previously estimated, which in turn has direct implications for the closure of the deep branch of the ocean meridional overturning circulation as well as for the associated tracer budgets.

Laura Cimoli

and 3 more

Oceanic transient tracers, such as chlorofluorocarbons (CFCs) and sulfur-hexafluoride (SF6), trace the propagation of intermediate-to-abyssal water masses in the ocean interior. Their temporal and spatial sparsity, however, has limited their utility in quantifying the global ocean circulation and its decadal variability. The Time-Correction Method presented here is a new approach to leverage the available CFCs and SF6 observations to solve for the Green’s functions describing the steady-state transport from the surface to the ocean interior. From the Green’s functions, we reconstruct global tracer concentrations (and associated uncertainties) in the ocean interior at annual resolution (1940 to 2021). The spatial resolution includes 50 neutral density levels that span the water column along WOCE/GO-SHIP lines. The reconstructed tracer concentrations return a global view of CFCs and SF6 spreading into new regions of the interior ocean, such as the deep north-western Pacific. For example, they capture the southward spreading and equatorial recirculation of distinct NADW components, and the spreading of CFC-rich AABW out of the Southern Ocean and into the North Pacific, East Indian, and West Atlantic. The reconstructed tracer concentrations fit the data in most locations (~75%), indicating that a steady-state circulation holds for the most part. Discrepancies between the reconstructed and observed concentrations offer insight into ventilation rate changes on decadal timescales. As an example, we infer decadal changes in Subantartic Mode Water (SAMW) and find an increase in SAMW ventilation from 1992 to 2014, highlighting the skill of the time-correction method in leveraging the sparse tracer observations.