Adrian Chappell

and 17 more

Vegetation is a major control on dust emission because it extracts momentum from the wind and shelters the soil surface, protecting dry and loose material from erosion by winds. Many traditional dust emission models (TEMs) assume that the Earth’s land surface is devoid of vegetation, adjust dust emission using a vegetation cover complement, and calibrate the magnitude of modelled emissions to atmospheric dust. We compare this approach with a novel albedo-based dust emission model (AEM) which calibrates Earth’s land surface normalised shadow (1-albedo) to shelter depending on wind speed, to represent aerodynamic roughness spatio-temporal variation. Existing datasets of satellite observed dust emission from point sources (DPS) and dust optical depth (DOD) show little spatial relation and DOD frequency exceeds DPS frequency by up to two orders of magnitude. Relative to DPS frequency, both dust emission models showed strong relations, but over-estimate dust emission frequency, suitable for calibration to observed dust emission. Our results show that TEMs over-estimate large dust emission over vast vegetated areas and produce considerable false change in dust emission, relative to the AEM. It is difficult to avoid the conclusion, raised by other literature, that calibrating dust cycle models to atmospheric dust has hidden for more than two decades, these TEM modelling weaknesses and its poor performance. The AEM overcomes these weaknesses and improves performance without masks or vegetation cover. Considerable potential exists for Earth System Models driven by prognostic albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change projections.

Yi-Ling Hwong

and 10 more

Convection is usually parameterized in global climate models, and there are often large discrepancies between results obtained with different convection schemes. Conventional methods of comparing convection schemes using observational cases or directly in 3D models do not always clearly identify parameterization strengths and weaknesses. In this paper we evaluate the response of parameterizations to various perturbations rather than their behavior under particular strong forcing. We use the linear response function method proposed by Kuang (2010) to compare twelve physical packages in five atmospheric models using single-column model (SCM) simulations under idealized radiative-convective equilibrium conditions. The models are forced with anomalous temperature and moisture tendencies. The temperature and moisture departures from equilibrium are compared with published results from a cloud-resolving model (CRM). Results show that the procedure is capable of isolating the behavior of a convection scheme from other physics schemes. We identify areas of agreement but also substantial differences between convection schemes, some of which can be related to scheme design. Some aspects of the model linear responses are related to their RCE profiles (the relative humidity profile in particular), while others constitute independent diagnostics. All the SCMs show irregularities or discontinuities in behavior that are likely related to switches or thresholds built into the convection schemes, and which do not appear in the CRM. Our results highlight potential flaws in convection schemes and suggest possible new directions to explore for parameterization evaluation.

Yi-Ling Hwong

and 2 more

Single-column models (SCMs) are often used to evaluate model physics and aid parameterization development. However, few studies have systematically compared the results obtained using 1D setups with those of their corresponding 3D models, and examined what factors potentially impact their comparability. This paper addresses these questions. We focus on the application of SCMs under idealized RCE conditions and use a multi-column model (MCM) setup as stepping stone for a 3D model. We find that convective organization in the MCM depends at least as much on the convection scheme used as on other mechanisms known to organize convection (e.g., radiative feedback). Moreover, convective organization emerges as a robust factor affecting SCM-MCM comparability, with more aggregated states in 3D associated with larger behavior deviations from the 1D counterpart. This is found across five convection schemes and applies to simulated mean states, linear responses to small tendency perturbations, and adjustments to doubled-CO2 forcing. Applying a “model-as-truth” approach, we find that even when convection is organized, behavior differences between pairs of schemes in the SCM are largely preserved in the MCM. This indicates that when model physics produces accurate behavior in a 1D setup, it will be more likely to do so in a 3D setup. We also demonstrate the practical value of linear responses by showing that they can accurately predict an SCM’s tropospheric adjustment to doubled-CO2 forcing.