Jeff Dozier

and 9 more

Chemical and biological composition of surface materials and physical structure and arrangement of those materials determine the intrinsic reflectance of Earth’s land surface. The apparent reflectance—as measured by a spaceborne or airborne sensor that has been corrected for atmospheric attenuation—depends also on topography, surface roughness, and the atmosphere. Especially in Earth’s mountains, estimating properties of scientific interest from remotely sensed data requires compensation for topography. Doing so requires information from digital elevation models (DEMs). Available DEMs with global coverage are derived from spaceborne interferometric radar and stereo-photogrammetry at ~30 m spatial resolution. Locally or regionally, lidar altimetry, interferometric radar, or stereo-photogrammetry produces DEMs with finer resolutions. Characterization of their quality typically expresses the root-mean-square (RMS) error of the elevation, but the accuracy of remotely sensed retrievals is sensitive to uncertainties in topographic properties that affect incoming and reflected radiation and that are inadequately represented by the RMS error of the elevation. The most essential variables are the cosine of the local solar illumination angle on a slope, the shadows cast by neighboring terrain, and the view factor, the fraction of the overlying hemisphere open to the sky. Comparison of global DEMs with locally available fine-scale DEMs shows that calculations with the global products consistently underestimate the cosine of the solar angle and underrepresent shadows. Analyzing imagery of Earth’s mountains from current and future spaceborne missions requires addressing the uncertainty introduced by errors in DEMs on algorithms that analyze remotely sensed data to produce information about Earth’s surface.

Niklas Bohn

and 9 more

Snow and ice melt processes are a key in Earth’s energy-balance and hydrological cycle. Their quantification facilitates predictions of meltwater runoff as well as distribution and availability of fresh water. They control the balance of the Earth’s ice sheets and are acutely sensitive to climate change. These processes decrease the surface reflectance with unique spectral patterns due to the accumulation of liquid water and light absorbing particles (LAP), that require imaging spectroscopy to map and measure. Here we present a new method to retrieve snow grain size, liquid water fraction, and LAP mass mixing ratio from airborne and spaceborne imaging spectroscopy acquisitions. This methodology is based on a simultaneous retrieval of atmospheric and surface parameters using optimal estimation (OE), a retrieval technique which leverages prior knowledge and measurement noise in an inversion that also produces uncertainty estimates. We exploit statistical relationships between surface reflectance spectra and snow and ice properties to estimate their most probable quantities given the reflectance. To test this new algorithm we conducted a sensitivity analysis based on simulated top-of-atmosphere radiance spectra using the upcoming EnMAP orbital imaging spectroscopy mission, demonstrating an accurate estimation performance of snow and ice surface properties. A validation experiment using in-situ measurements of glacier algae mass mixing ratio and surface reflectance from the Greenland Ice Sheet gave uncertainties of ±16.4 μg/g_ice and less than 3%, respectively. Finally, we evaluated the retrieval capacity for all snow and ice properties with an AVIRIS-NG acquisition from the Greenland Ice Sheet demonstrating this approach’s potential and suitability for upcoming orbital imaging spectroscopy missions.