Zachary Barkley

and 12 more

Yaxing Wei

and 49 more

The ACT-America project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases. The open and freely available ACT-America datasets provide airborne in-situ measurements of atmospheric carbon dioxide, methane, trace gases, aerosols, clouds, and meteorological properties, airborne remote sensing measurements of aerosol backscatter, atmospheric boundary layer height and columnar content of atmospheric carbon dioxide, tower-based measurements, and modeled atmospheric mole fractions and regional carbon fluxes of greenhouse gases over the Central and Eastern United States. We conducted 121 research flights during five campaigns in four seasons during 2016-2019 over three regions of the US (Mid-Atlantic, Midwest and South) using two NASA research aircraft (B-200 and C-130). We performed three flight patterns (fair weather, frontal crossings, and OCO-2 underflights) and collected more than 1,140 hours of airborne measurements via level-leg flights in the atmospheric boundary layer, lower, and upper free troposphere and vertical profiles spanning these altitudes. We also merged various airborne in-situ measurements onto a common standard sampling interval, which brings coherence to the data, creates geolocated data products, and makes it much easier for the users to perform holistic analysis of the ACT-America data products. Here, we report on detailed information of datasets collected, and the workflow for datasets including storage and processing of the quality controlled and quality assured harmonized observations, and their archival and formatting for users. Finally, we provide some important information on the dissemination of data products including metadata and highlights of applications of datasets for future investigations.

Yu Yan Cui

and 8 more

Quantification of regional terrestrial carbon dioxide (CO2) fluxes is critical to our understanding of the carbon cycle. We evaluate inverse estimates of net ecosystem exchange (NEE) of CO2 fluxes in temperate North America, and their sensitivity to the observational data used to drive the inversions. Specifically, we consider the state-of-the-science CarbonTracker global inversion system, which assimilates (i) in situ measurements (’IS’), 29 (ii) the Orbiting Carbon Observatory-2 (OCO-2) v9 column CO 2 (XCO2) retrievals over land (’LNLG’), (iii) OCO-2 v9 XCO 2 retrievals over ocean (’OG’), and (iv) a combination of all these observational constraints (’LNLGOGIS’). We use independent CO2 observations from the Atmospheric Carbon and Transport (ACT)-America aircraft mission to evaluate the inversions. We diagnose errors in the flux estimates using the differences between modeled and observed biogenic CO2 mole fractions, influence functions from a Lagrangian transport model, and root-mean-square error (RMSE) and bias metrics. The IS fluxes have the smallest RMSE among the four products, followed by LNLG. Both IS and LNLG outperform the OG and LNLGOGIS inversions with regard to RMSE. Regional errors do not differ markedly across the four sets of posterior fluxes. The CarbonTracker inversions appear to overestimate the seasonal cycle of NEE in the Midwest and Western Canada, and overestimate dormant season NEE across the Central and Eastern US. The CarbonTracker inversions may overestimate annual NEE in the Central and Eastern US. The success of the LNLG inversion with respect to independent observations bodes well for satellite-based inversions in regions with more limited in situ observing networks.