Daisuke Takasuka

and 12 more

Toward the achievement of reliable global kilometer-scale (k-scale) climate simulations, we improve the Nonhydrostatic ICosaherdral Atmospheric Model (NICAM) by focusing on moist physical processes. A goal of the model improvement is to establish a configuration that can simulate realistic fields seamlessly from the daily-scale variability to the climatological statistics. Referring to the two representative configurations of the present NICAM, of which each has been used for climate-scale and sub-seasonal-scale experiments, we try to find the appropriate partitioning of fast/local and slow/global-scale circulations. In a series of sensitivity experiments at 14-km horizontal mesh, (1) the tuning of terminal velocities of rain, snow, and cloud ice, (2) the implementation of turbulent diffusion by the Leonard term, and (3) enhanced vertical resolution are tested. These tests yield reasonable convection triggering and convection-induced tropospheric moistening, and result in better performance than in previous NICAM climate simulations. In the mean state, double Intertropical Convergence Zone bias disappears, and the zonal contrast of equatorial precipitation, top-of-atmosphere radiation balance, vertical temperature profile, and position/strength of subtropical jet are dramatically better reproduced. Variability such as equatorial waves and the Madden–Julian oscillation (MJO) is spontaneously realized with appropriate spectral power balance, and the Asian summer monsoon, boreal-summer MJO, and tropical cyclone (TC) activities are more realistically simulated especially around the western Pacific. Meanwhile, biases still exist in the representation of low-cloud fraction, TC intensity, and precipitation diurnal cycle, suggesting that both finer spatial resolutions and the further model development are warranted.

Tsubasa Kohyama

and 3 more

In the zonal direction, the downward branch of the Walker circulation above the Indian Ocean is only 20 degrees wide, whereas the Pacific counterpart is 90 degrees wide. This zonal sharpness is notable because atmospheric disturbances smaller than the planetary scale, such as the Asian Summer Monsoon, can interact with the planetary-scale Walker circulation through this branch. As a moist circulation, this zonal sharpness is imprinted on a unique zonal discontinuity of the tropical rain belt above Northeast Africa. Therefore, in this study, we refer to this narrow downward branch as the “Wall”, investigate its climatology and interannual variability, and aim at determining its reason for existence. The strongest season of the lower tropospheric Wall in boreal summer is sustained by horizontal cold advection associated with the Asian Summer Monsoon. Two weak phases of the Wall correspond to two rainy seasons at the Eastern Horn of Africa, which are not reproduced well by state-of-the-art global climate models. As for interannual variability, one standard deviation change of a strength of the downward motion at the Wall is associated with about one degree of sea surface temperature variation in the tropical Pacific, and the regression and correlation coefficients are highest in boreal autumn. Nevertheless, total variance is explained more by local sea surface temperature. Experiments using a convection-permitting atmospheric model show that vertical mixing forced by mountain waves in East Africa are necessary for sustaining the Wall. After flattening the East African topography, zonal discontinuity of the tropical rain belt disappears.