Wayne Stephenson

and 4 more

Since 1973 micro-erosion meters (MEM) have been used at Kaikōura Peninsula to determine lowering rates on inter-tidal shore platforms. Rates measured over two, two year periods (1973-1975 and 1994-1996) and at decadal scales (20-30 years) demonstrate that platform surface lowering is on average 1.1 mm/yr. The 14 November 2016 Kaikōura magnitude 7.8 (Mw) earthquake caused an instantaneous uplift of 0.8-1.0 m of the peninsula. The uplift offers the rare opportunity to examine how such an event alters processes and rates of erosion on these shore platforms, since these are now partially marine terraces as the inner margins of some platforms are now above high tidal levels (but perhaps not storm surge). Since the earthquake, 42 MEM sites have been measured seven times at 3 monthly intervals. Most recently in September 2018. MEM sites show widely varying responses to the uplift. Erosion rates are at some MEM sites three times the previous annual rate while other sites show significant amounts of rock swelling (3-4 mm in 6 months), or aggradation as weathered rock fragments are no longer removed by wave action. The coseismic uplift has fundamentally changed the process regime operating on these platforms. Zones of maximum wetting and drying have migrated seaward causing previously slow eroding (< 1 mm/yr) MEM sites to accelerate to twice the pre-earthquake rates. Erosion rates demonstrate rapid adjustment of the platform surface to this disturbance and illustrate how uplifted marine terraces can be rapidly eroded despite being above sea level. The preservation of the new marine terrace is probably dependent on further uplift within the next 300-400 years, otherwise erosion by lowering and backwear will likely remove the new surface. This scenario has significant implications for marine terrace preservation and the recording of coseismic events in the landscape.

Tim Naish

and 17 more

Anticipating and managing the impacts of sea-level rise for nations astride active tectonic margins requires rates of sea surface elevation change in relation to coastal land elevation to be understood. Vertical land motion (VLM) can either exacerbate or reduce sea-level changes with impacts varying significantly along a coastline. Determining rate, pattern, and variability of VLM near coasts leads to a direct improvement of location-specific relative sea level (RSL) estimates. Here, we utilise vertical velocity field from interferometric synthetic aperture radar (InSAR) data, calibrated with campaign and continuous Global Navigation Satellite System (GNSS), to determine the VLM for the entire coastline of New Zealand. Guided by existing knowledge of the seismic cycle, the VLM data infer long-term, interseismic rates of land surface deformation. We build probabilistic RSL projections using the Framework for Assessing Changes to Sea-level (FACTS) from IPCC Assessment Report 6 and ingest local VLM data to produce RSL projections at 7435 sites, thereby enhancing spatial coverage that was previously limited to tide gauges. We present ensembles of probability distributions of RSL for medium confidence climatic processes for each scenario to 2150 and low confidence processes to 2300. For regions where land subsidence is occurring at rates >2mm yr-1 VLM makes a significant contribution to RSL projections for all scenarios out 2150. Beyond 2150, for higher emissions scenarios, the land ice contribution to global sea level dominates. We discuss the planning implications of RSL projections, where timing of threshold exceedance for coastal inundation can be brought forward by decades.