Tian Li

and 5 more

Monitoring nighttime light (NTL) change enables us to quantitatively analyze the dynamic patterns of human activity and socioeconomic features. NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) atmospheric- and Lunar-BRDF-corrected Black Marble product (VNP46A2) provides daily global nighttime radiances with high temporal consistency. However, timely and continuous monitoring of NTL changes based on the dense daily DNB time series is still lacking. In this study, we proposed a novel Viewing Zenith Angle (VZA) stratified COntinuous monitoring of Land Disturbance (COLD) algorithm (VZA-COLD) to detect NTL change at 15 arc-second spatial resolution with daily updating capability based on NASA’s Black Marble products. Specifically, we divided the clear observations into four VZA intervals (0–20°, 20°–40°, 40°–60°, and 0–60°) to mitigate the temporal variation of the NTL data caused by the combined angular effects of viewing geometry and the complex surface conditions (e.g., building heights, vegetation canopy covers, etc.). Single-term harmonic models were continuously estimated for new observations from each VZA interval, and by comparing the model predictions with the actual DNB observations, a unified set of NTL changes can be captured continuously among the different VZA intervals. The final NTL change maps were generated after excluding the consistent dark pixels. Results showed that the VZA-COLD algorithm reduced the DNB data temporal variations caused by disparities among different viewing angles and surface conditions, and successfully detected NTL changes for six globally distributed test sites with an overall accuracy of 99.71%, a user’s accuracy of 87.18%, and a producer’s accuracy of 68.88% for the NTL change category.

Srija Chakraborty

and 4 more

Monitoring changes in greenhouse gas (GHG) emission is critical for assessing climate mitigation efforts towards the Paris Agreement goal. A crucial aspect of science-based GHG monitoring is to provide objective information for quality assurance and uncertainty assessment of the reported emissions. Emission estimates from combustion events (gas flaring and biomass burning) are often calculated based on activity data (AD) from satellite observations, such as those detected from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-NPP and NOAA-20 satellites. These estimates are often incorporated into carbon models for calculating emissions and removals. Consequently, errors and uncertainties associated with AD propagate into these models and impact emission estimates. Deriving uncertainty of AD is therefore crucial for transparency of emission estimates but remains a challenge due to the lack of evaluation data or alternate estimates. This work proposes a new approach using machine learning (ML) for combustion detection from NASA’s Black Marble product suite and explores the assessment of potential uncertainties through comparison with existing datasets. We jointly characterize combustion using thermal and light emission signals, with the latter improving detection of probable weaker combustion with less distinct thermal signatures. Being methodologically independent, the differences in ML-derived estimates with existing approaches can indicate the potential uncertainties in detection. The approach was applied to detect gas flaring activities over the Eagle Ford Shale, Texas. We analyzed the spatio-temporal variations in detections and found that approximately 79.04% and 72.14% of the light emission-based detections are missed by ML-derived detections from VIIRS thermal bands and existing datasets, respectively. The region was impacted by the winter storm Uri which resulted in a significant reduction of flaring activities followed by a post-storm resumption. Our method is extendible to combustion events, such as biomass and waste burning, and can be scaled globally for transparent emission estimate reporting.