Emma C. Kahle

and 13 more

Data from the South Pole ice core (SPC14) are used to constrain climate conditions and ice-flow-induced layer thinning for the last 54,000 years. Empirical constraints are obtained from the SPC14 ice and gas timescales, used to calculate annual-layer thickness and the gas-ice age difference (Δage), and from high-resolution measurements of water isotopes, used to calculate the water-isotope diffusion length. Both Δage and diffusion length depend on firn properties and therefore contain information about past temperature and snow-accumulation rate. A statistical inverse approach is used to obtain an ensemble of reconstructions of temperature, accumulation-rate, and thinning of annual layers in the ice sheet at the SPC14 site. The traditional water-isotope/temperature relationship is not used as a constraint; the results therefore provide an independent calibration of that relationship. The temperature reconstruction yields a glacial-interglacial temperature change of 6.7 ± 1.0 °C at the South Pole. The sensitivity of δ180 to temperature is 0.99 ± 0.03 ‰/°C, significantly greater than the spatial slope of ~0.8 ‰/°C that has been used previously to determine temperature changes from East Antarctic ice core records. The reconstructions of accumulation rate and ice thinning show millennial-scale variations in the thinning function as well as decreased thinning at depth compared to the results of a 1-D ice flow model, suggesting influence of bedrock topography on ice flow.

John Fegyveresi

and 7 more

Using samples from the South Pole Ice Core (SPC14), we present new bubble number-density (BND) measurements and a modeled temperature history reconstruction for the South Pole site back through ~18.5 ka. Additionally, we show that 3D micro-CT sample imagery can accurately quantify BND, enabling more rapid and efficient future analyses. Using sampling and imaging techniques previously established for analyses of the WAIS Divide ice core (Spencer et al., 2006; Fegyveresi et al., 2016), we measured BND as well as other bubble characteristics from just below pore close-off depth starting at ~160 m, down to ~1200 m, at 20-meter intervals (53 total samples), with typical values ranging between 800 and 900 bubbles cm-3 over this interval. These values are higher than any previously recorded for ice-core BND, indicative of both colder average temperatures, and higher average accumulation rates at South Pole. Below ~1100 m, we noted significant bubble loss owing to the onset of clathrate-hydrate formation. Using micro-CT technology, we also tested the use of 3D imagery to accurately measure and evaluate BND as a supplement and future alternative to painstaking thin-section measurements. We imaged a secondary set of ice-core samples at 100-meter intervals starting at 200 m, and across the sample total depth range. Once corrected for cut- and micro-bubbles, our results show comparable values and thus similar trends to the thin-section data. For our temperature model, we determined an accumulation record using both measured annual layer thicknesses as well as estimated d15N-derived firn-column thicknesses estimates. Our temperature reconstruction was calculated using the model developed by Spencer et al. (2006), and using a South Pole site-specific bubble-to-grain ratio (G) of 1.6. the reconstruction reveals a warming across the glacial-interglacial transition of ~7°C, with a relatively stable trend through the Holocene (< 0.4°C warming). These results are in close agreement with those reported by other independent paleothermometers (i.e. isotope- and firn-derived reconstructions). Results of our temperature reconstruction also reveal that using 3D micro-CT imagery in place of traditional thin-section techniques produces comparable results, but with even greater accuracy, and lower measures of uncertainty.