Kaidi Peng

and 5 more

Satellite-based precipitation observations provide near-global coverage with high spatiotemporal resolution in near-realtime. Their utility, however, is hindered by oftentimes large errors that vary substantially in space and time. Since precipitation uncertainty is, by definition, a random process, probabilistic expression of satellite-based precipitation product uncertainty is needed to advance their operational applications. Ensemble methods, in which uncertainty is depicted via multiple realizations of precipitation fields, have been widely used in other contexts such as numerical weather prediction, but rarely in satellite contexts. Creating such an ensemble dataset is challenging due to the complexity of errors and the scarcity of “ground truth” to characterize it. This challenge is particularly pronounced in ungauged regions, where the benefits of satellite-based precipitation data could otherwise provide substantial benefits. In this study, we propose the first quasi-global (covering all continental land masses within 50°N-50°S) satellite-only ensemble precipitation dataset, derived entirely from NASA’s Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (IMERG) and GPM’s radar-radiometer combined precipitation product (2B-CMB). No ground-based measurements are used in this generation and it is suitable for near-realtime use, limited only by the latency of IMERG. We compare the results against several precipitation datasets of distinct classes, including global satellite-based, rain gauge-based, atmospheric reanalysis, and merged products. While our proposed approach faces some limitations and is not universally superior to the datasets it is compared to in all respects, it does hold relative advantages due to its combination of accuracy, resolution, latency, and utility in hydrologic and hazard applications.

Yuan Liu

and 2 more

Existing stochastic rainfall generators (SRGs) are typically limited to relatively small domains due to spatial stationarity assumptions, hindering their usefulness for flood studies in large basins. This study proposes StormLab, an SRG that simulates precipitation events at 6-hour and 0.03° resolution in the Mississippi River Basin (MRB). The model focuses on winter and spring storms caused by strong water vapor transport from the Gulf of Mexico—the key flood-generating storm type in the basin. The model generates anisotropic spatiotemporal noise fields that replicate local precipitation structures from observed data. The noise is transformed into precipitation through parametric distributions conditioned on large-scale atmospheric fields from a climate model, reflecting both spatial and temporal nonstationarity. StormLab can produce multiple realizations that reflect the uncertainty in fine-scale precipitation arising from a specific large-scale atmospheric environment. Model parameters were fitted for each month from December-May, based on storms identified from 1979-2021 ERA5 reanalysis data and AORC precipitation. Validation showed good consistency in key storm characteristics between StormLab simulations and AORC data. StormLab then generated 1,000 synthetic years of precipitation events based on 10 CESM2 ensemble simulations. Empirical return levels of simulated annual maxima agreed well with AORC data and displayed bounded tail behavior. To our knowledge, this is the first SRG simulating nonstationary, anisotropic high-resolution precipitation over continental-scale river basins, demonstrating the value of conditioning such stochastic models on large-scale atmospheric variables. The simulated events provide a wide range of extreme precipitation scenarios that can be further used for design floods in the MRB.

Samantha Hartke

and 3 more

In global applications and data sparse regions, which comprise most of the earth, hydrologic model-based flood monitoring relies on precipitation data from satellite multisensor precipitation products or numerical weather forecasts. However, these products often exhibit substantial errors during the meteorological conditions that lead to flooding, including extreme rainfall. The propagation of precipitation forcing errors to predicted runoff and streamflow is scale-dependent and requires an understanding of the autocorrelation structure of precipitation errors, since error autocorrelation impacts the accumulation of precipitation errors over space and time in hydrologic models. Previous efforts to account for satellite precipitation uncertainty in hydrologic models have demonstrated the potential for improving streamflow estimates; however, these efforts use satellite precipitation error models that rely heavily on ground reference data such as rain gages or weather radar and do not characterize the nonstationarity of precipitation error autocorrelation structures. This work evaluates a new method, the Space-Time Rainfall Error and Autocorrelation Model (STREAM), which stochastically generates possible true precipitation fields, as input to the Hillslope Link Model to generate ensemble streamflow estimates. Unlike previous error models, STREAM represents the nonstationary and anisotropic autocorrelation structure of satellite 2 precipitation error and does not use any ground reference to do so. Ensemble streamflow predictions are compared with streamflow generated using satellite precipitation fields as well as a radar-gage precipitation dataset during peak flow events. Results demonstrate that this approach to accounting for precipitation uncertainty effectively characterizes the uncertainty in streamflow estimates and reduces the error of predicted streamflow. Streamflow ensembles forced by STREAM improve streamflow prediction nearly to the level obtained using ground-reference forcing data across basin sizes.

Zhe Li

and 6 more

The usefulness of satellite multisensor precipitation products such as NASA’s 30-minute, 0.1° Integrated Multi-satellitE Retrievals for the Global Precipitation Mission (IMERG) is hindered by their associated errors. Reliable estimates of uncertainty would mitigate this limitation, especially in near-real time. Creating such estimates is challenging, however, due both to the complex discrete-continuous nature of satellite precipitation errors and to the lack of “ground truth” data precisely in the places—including complex terrain and developing countries—that could benefit most from satellite precipitation estimates. In this work, we use swath-based precipitation products from the Global Precipitation Mission (GPM) Dual-frequency Precipitation Radar (DPR) as an alternative to ground-based observations to facilitate IMERG uncertainty estimation. We compare the suitability of two DPR derived products, 2ADPR and 2BCMB, against higher-fidelity Ground Validation Multi-Radar Multi-Sensor (GV-MRMS) ground reference data over the contiguous United States. 2BCMB is selected to train mixed discrete-continuous error models based on Censored Shifted Gamma Distributions. Uncertainty estimates from these error models are compared against alternative models trained on GV-MRMS. Using information from NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis, we also demonstrate how IMERG uncertainty estimates can be further constrained using additional precipitation-related predictors. Though several critical issues remain unresolved, the proposed method shows promise for yielding robust uncertainty estimates in near-real time for IMERG and other similar precipitation products at their native resolution across the entire globe.

Brian J. Butterworth

and 44 more

The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June-October 2019. The purpose of the study is to examine how the atmospheric boundary layer responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model-data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10×10 km domain of a heterogeneous forest ecosystem in the Chequamegon-Nicolet National Forest in northern Wisconsin USA, centered on the existing Park Falls 447-m tower that anchors an Ameriflux/NOAA supersite (US-PFa / WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft, maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology, and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large eddy simulation and scaling experiments to better understand sub-mesoscale processes and improve formulations of sub-grid scale processes in numerical weather and climate models.

Ricardo Mantilla

and 4 more

We investigate the validity of implicit assumptions in regional flood frequency analysis (RFFA) using Monte Carlo-style simulations of three distributed hydrological models forced with rainfall events generated using stochastic storm transposition. We test the long-standing assumption that for a set of sites within a region, physical homogeneity — defined in terms of the variability of meteorological inputs, the physics of runoff generation, and runoff routing — implies statistical homogeneity of peak flows— defined in terms of the existence of a common underlying statistical distribution with parameters that can be inferred using information from neighboring sites. Our modeling results do not support this assumption, with potentially important implications for RFFA methodologies and for the very definitions of homogeneity. We show that statistically homogeneous rainfall does not translate into predictable peak flow distribution parameters across drainage scales. Specifically, we show that changes in the coefficient of variation and skewness of peak flows cannot be inferred from upstream area alone, making popular regionalization techniques such as the index-flood method and quantile regression inadequate approximations for flood frequency estimation. Our findings are consistent across the three hydrological model formulations, lending confidence that our conclusions are not an artifact of epistemological model decisions. Finally, we argue that our methodology can serve as a framework to test new proposed empirical RFFA methods, and that it opens the door to a unified physics-informed framework for prediction of flood frequencies in ungauged basins embedded in gauged regions.

YIHAN LI

and 2 more

At-a-station hydraulic geometry (AHG), which describes how channel width, depth, and velocity vary with discharge at a river cross section, has long been used to study fluvial processes. For example, identification of landscape and river reach drivers of hydraulic geometry can help to predict channel properties at ungaged sites and to understand channel responses to major floods. Most prior AHG studies have focused on mid-latitude, temperate regions. Tropical zones-including those affected by tropical cyclones (TCs)-have received less attention. This study analyzed spatial and temporal variability in hydraulic geometry at 24 stream gaging sites in Puerto Rico, and identified the watershed and river reach characteristics that correlate with each hydraulic geometry parameter. These characteristics were then used to build regression models of AHG parameters, with relatively high predictive power. The largest flood events from each site were found to cause systematic changes to AHG parameters; most of these floods were caused by major TCs. Upstream drainage area, average watershed elevation, watershed land cover and other characteristics were found to be significant predictors of AHG parameters. Reaches with steeper slopes were found to have limited lateral adjustability, which may reflect consolidated bank materials and valley confinement. Watersheds with high percentages of forested area showed greater changes in roughness but less vertical adjustability than more developed watersheds. These correlation results help inform whether river channel properties in Puerto Rico and similar environments are resistant to the forces of TC-induced flooding, and how these properties are affected by major floods.

Samantha H. Hartke

and 5 more

The usefulness of satellite multi-sensor precipitation (SMP) and other satellite-informed precipitation products in water resources modeling can be hindered by substantial errors which vary considerably with spatiotemporal scale. One approach to cope with these errors is by combining SMPs with ensemble generation methods, such that each ensemble member reflects one plausible realization of the true—but unknown—precipitation. This requires replicating the spatiotemporal autocorrelation structure of SMP errors. The climatology of this structure is unknown for most locations due to a lack of ground reference observations, while the unique anisotropy and nonstationarity within any particular precipitation system limit the relevance of this climataology to the depiction of error in individual storm systems. Characterizing and simulating this autocorrelation across spatiotemporal scales has thus been called a grand challenge within the precipitation community. We introduce the Space-Time Rainfall Error and Autocorrelation Model (STREAM), which combines anisotropic and nonstationary SMP spatiotemporal correlation structures with a pixel-scale precipitation error model to stochastically generate ensemble precipitation fields that resemble “ground truth” precipitation. We generate STREAM precipitation ensembles at high resolution (1-hour, 0.1˚) with minimal reliance on ground-reference data, and evaluate these ensembles at multiple scales. STREAM ensembles consistently “bracket” ground-truth observations and replicate the autocorrelation structure of ground-truth precipitation fields. STREAM is compatible with pixel-scale error/uncertainty formulations beyond those presented here, and could be applied globally to other precipitation sources such as numerical weather predictions or “blended” products. In combination with recent work in SMP uncertainty characterization, STREAM could be run without any ground data.