E. Natasha Stavros

and 23 more

Observations of Planet Earth from space are a critical resource for science and society. Satellite measurements represent very large investments and United States (US) agencies organize their effort to maximize the return on that investment. The US National Research Council conducts a survey of earth science and applications to prioritize observations for the coming decade. The most recent survey prioritized a visible to shortwave infrared imaging spectrometer and a multi-spectral thermal infrared imager to meet a range of needs. First, and perhaps, foremost, it will be the premier integrated observatory for observing the emerging impacts of climate change . It will characterize the diversity of plant life by resolving chemical and physiological signatures. It will address wildfire, observing pre-fire risk, fire behavior and post-fire recovery. It will inform responses to hazards and disasters guiding responses to a wide range of events, including oil spills, toxic minerals in minelands, harmful algal blooms, landslides and other geological hazards. The SBG team analyzed needed instrument characteristics (spatial, temporal and spectral resolution, measurement uncertainty) and assessed the cost, mass, power, volume, and risk of different architectures. The Research and Applications team examined available algorithms, calibration and validation and societal applications and used end-to-end modeling to assess uncertainty. The team also identified valuable opportunities for international collaboration to increase the frequency of revisit through data sharing, adding value for all partners. Analysis of the science, applications, architecture and partnerships led to a clear measurement strategy and a well-defined observing system architecture.

David N. Wiese

and 17 more

The 2017-2027 United States National Academy of Sciences Decadal Survey (DS) for Earth Science and Applications from Space identified Mass Change (MC) as one of five Designated Observables (DOs) having the highest priority in terms of Earth observations required to advance Earth system science over the next decade. In response to this designation, NASA initiated several multi-center studies, with the goal of recommending observing system architectures for each DO for implementation within this decade. This paper provides an overview of the Mass Change Designated Observable (MCDO) Study along with key findings. The study process included: (1) generation of a Science and Applications Traceability Matrix (SATM) that maps required measurement parameters to the DS Science and Applications Objectives; (2) identification of three architecture classes relevant for measuring mass change: Precise Orbit Determination (POD), Satellite-Satellite-Tracking (SST) and Gravity Gradiometry (GG), along with variants within each architecture class; and (3) creation of a Value Framework process that considers science value, cost, risk, schedule, and partnership opportunities, to identify and recommend high value observing systems for further in-depth study. The study team recommended the implementation of an SST architecture, and identified variants that simultaneously (1) satisfy the baseline measurement parameters of the SATM; (2) maximize the probability of providing overlap with the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission currently in operation, accelerating science return from both missions; and (3) provide a pathway towards substantial improvements in resolution and accuracy of mass change data products relative to the program of record.