Zhi Li

and 7 more

Wildfires can induce an abundance of vegetation and soil changes that may trigger higher surface runoff and soil erosion, affecting the water cycling within these ecosystems. In this study, we employed the Advanced Terrestrial Simulator (ATS), an integrated and fully distributed hydrologic model at watershed scale to investigate post-fire hydrologic responses in a few selected watersheds with varying burn severity in the Pacific Northwest region of the United States. The model couples surface overland flow, subsurface flow, and canopy biophysical processes. We developed a new fire module in ATS to account for the fire-caused hydrophobicity in the topsoil. Modeling results show that the watershed-averaged evapotranspiration is reduced after high burn severity wildfires. Post-fire peak flows are increased by 21-34% in the three study watersheds burned with medium to high severity due to the fire-caused soil water repellency (SWR). However, the watershed impacted by a low severity fire only witnessed a 2% surge in post-fire peak flow. Furthermore, the high severity fire resulted in a mean reduction of 38% in the infiltration rate within fire-impacted watershed during the first post-fire wet season. Hypothetical numerical experiments with a range of precipitation regimes after a high severity fire reveal the post-fire peak flows can be escalated by 1-34% due to the SWR effect triggered by the fire. This study implies the importance of applying fully distributed hydrologic models in quantifying the disturbance-feedback loop to account for the complexity brought by spatial heterogeneity.

Pin Shuai

and 3 more

The streambed is the critical interface between the aquatic and terrestrial systems and hosts important biogeochemical hot spots within river corridors. Although the streambed characteristics are significantly different from those of its surrounding soil, the streambed itself has not been explicitly represented in watershed models. We developed an integrated hydrologic model that explicitly incorporated a streambed layer to examine the hydrological effects of streambed characteristics including hydraulic conductivity (K), layer thickness, and width on the exchange fluxes across the streambed as well as the streamflow at the watershed outlet. The numerical experiments were performed in the American River Watershed, a headwater, mountainous watershed within the Yakima River Basin in central Washington. Despite having a negligible effect on the watershed streamflow, an explicit representation of the streambed with distinctive properties dramatically changed the magnitude and variability of the exchange flux. In general, larger streambed K along with a thicker streambed layer induced larger exchange fluxes. The exchange flux was most sensitive to the streambed width or the mesh resolution of the streambed. A smaller streambed width (or a finer streambed resolution) increases exchange fluxes per unit area while reducing the overall exchange volumes across the entire streambed. The amount of baseflow decreased by 6% as the streambed width decreased from 250 m to 50 m. This finding is important because these hydrological changes may in turn affect the exchange of nutrients and contaminants between surface water and groundwater and the associated biogeochemical processes. Our work demonstrated the importance of representing streambed in fully distributed, process-based watershed models in better capturing the exchange flow dynamics in river corridors.

Matthew Cooper

and 7 more

Permafrost active layer thickness (ALT) is a sensitive indicator of permafrost response to climate change. In recent decades, ALT has increased at sites across the Arctic, concurrent with observed increases in annual minimum streamflow (baseflow). The trends in ALT and baseflow are thought to be linked via: 1) increased soil water storage capacity due to an increased active layer, and 2) enhanced soil water mobility within a more continuous active layer, both of which support higher baseflow in Arctic rivers. One approach to analyzing these changes in ALT and baseflow is to use baseflow recession analysis, which is a classical method in hydrology that relates groundwater storage S to baseflow Q with a power law-like relationship Q = aSb. For the special case of a linear reservoir (b=1.0), the baseflow recession method has been extended to quantify changes in ALT from streamflow measurements alone. We test this approach at sites across the North American Arctic and find that catchments underlain by permafrost behave as nonlinear reservoirs, with scaling exponents b~1.5–3.0, undermining the key assumption of linearity that is commonly applied in this method. Despite this limitation, trends in a provide insight into the relationship between changing ALT and changing Arctic baseflow. Although care should be taken to ensure the theoretical assumptions are met, baseflow recession analysis shows promise as an empirical approach to constrain modeled permafrost change at the river basin scale.

Matthew G Cooper

and 7 more

Permafrost underlies approximately one fifth of the global land area and affects ground stability, freshwater runoff, soil chemistry, and surface‑atmosphere gas exchange. The depth of thawed ground overlying permafrost (active layer thickness, ALT) has broadly increased across the Arctic in recent decades, coincident with a period of increased streamflow, especially the lowest flows (baseflow). Mechanistic links between ALT and baseflow have recently been explored using linear reservoir theory, but most watersheds behave as nonlinear reservoirs. We derive theoretical nonlinear relationships between long‑term average saturated soil thickness η (proxy for ALT) and long-term average baseflow. The theory is applied to 38 years of daily streamflow data for the Kuparuk River basin on the North Slope of Alaska. Between 1983–2020, the theory predicts that η increased 0.11±0.17 [2σ] cm a-1, or 4.4±6.6 cm total. The rate of change nearly doubled to 0.20±0.24 cm a-1 between 1990–2020, during which time field measurements from CALM (Circumpolar Active Layer Monitoring) sites in the Kuparuk indicate η increased 0.31±0.22 cm a-1. The predicted rate of change more than doubled again between 2002–2020, mirroring a near doubling of observed ALT rate of change. The inferred increase in η is corroborated by GRACE (Gravity Recovery and Climate Experiment) satellite gravimetry, which indicates that terrestrial water storage increased ~0.80±3.40 cm a-1, ~56% higher than the predicted increase in η. Overall, hydrologic change is accelerating in the Kuparuk River basin, and we provide a theoretical framework for estimating changes in active layer water storage from streamflow measurements alone.