Einara Zahn

and 6 more

While yearly budgets of CO2 and evapotranspiration (ET) above forests can be readily obtained from eddy-covariance measurements, the quantification of their respective soil (respiration and evaporation) and canopy (photosynthesis and transpiration) components remains an elusive yet critical research objective. To this end, methods capable of reliably partitioning the measured ET and F_c fluxes into their respective soil and plant sources and sinks are highly valuable. In this work, we investigate four partitioning methods (two new, and two existing) that are based on analysis of conventional high frequency eddy-covariance (EC) data. The physical validity of the assumptions of all four methods, as well as their performance under different scenarios, are tested with the aid of large eddy simulations, which are used to replicate eddy-covariance field experiments. Our results indicate that canopies with large, exposed soil patches increase the mixing and correlation of scalars; this negatively impacts the performance of the partitioning methods, all of which require some degree of uncorrelatedness between CO2 and water vapor. In addition, best performance for all partitioning methods were found when all four flux components are non-negligible, and measurements are collected close to the canopy top. Methods relying on the water-use efficiency (W) perform better when W is known a priori, but are shown to be very sensitive to uncertainties in this input variable especially when canopy fluxes dominate. We conclude by showing how the correlation coefficient between CO2 and water vapor can be used to infer the reliability of different W parameterizations.

Zachariah Butler

and 4 more

The timescales associated with precipitation moving through watersheds reveal processes that are critical to understanding many hydrologic systems. Measurements of environmental stable water isotope ratios (δ 2H and δ 18O) have been used as tracers to study hydrologic timescales by examining how long it takes for incoming precipitation tracers become stream discharge, yet limited measurements both spatially and temporally have bounded macroscale evaluations so far. In this observation driven study across North American biomes within the National Ecological Observation Network (NEON), we examined δ 18O and δ 2H stable water isotope in precipitation (δP) and surface water (δQ) at 26 co-located sites. With an average 54 precipitation samples and 139 surface water samples per site, assessment of local meteoric water lines (LMWL) and local surface water line (LSWL) showed geographic variation across North America. Taking the ratio of estimated seasonal amplitudes of δP and δQ to calculate young water fractions ( Fyw), showed a Fyw range from 1% to 93% with most sites having Fyw below 20%. Calculated mean transit times (MTT) based on a gamma convolution model showed a range from 0.10 to 13.2 years, with half of the sites having MTT estimates lower than 2 years. Significant correlations (r) were found only between the Fyw and watershed area, longest flow length, and the longest flow length/slope, whereas the only significant correlation observed for MTT was with site latitude. The estimated Fyw and MTT provide information describing hydrologic processes at NEON sites, however limited correlations of Fyw and MTT with the environmental characteristics we analyzed demonstrate that these quantities are primarily driven by site or area specific factors. The analysis of isotope data presented here provides important constraints on isotope variation in North American biomes and the timescales of water movement through NEON study sites.

Stephen Good

and 8 more

Water and carbon exchanges between the land and atmosphere reflect key ecohydrologic processes, from global climate change to local watershed dynamics. Environmental stable isotope ratios of H2O and CO2 fluxes have been used to study these processes, yet measurement constraints have limited macroscale surface-atmosphere isotope flux evaluations. Across North American biomes within the US National Ecological Observation Network (NEON), we have worked as a team to translate raw measurements of carbon and water stable isotopes into calibrated daily surface-atmosphere flux isotope ratios for precipitation, evapotranspiration, and net ecosystem carbon exchange. Using information theory metrics, we demonstrate that these isotope observations contain meaningful information about the bulk water and carbon fluxes, with isotope measurements carrying about the same amount of information as wind speed measurements. Decomposition of this multivariate mutual information further shows that: (1) this information is unique, i.e. not carried by other traditional ecosystem measurements; and (2) the information added by isotopes is larger in more arid and cool ecosystems. Combining these isotope fluxes with bulk hydrologic fluxes drawn from a suite of land surface models in a first-order mass balance framework also allows for evaluation of hydrologic model structure and estimated uncertainties in partitioning of fluxes into transpiration, evaporation, overland, and subsurface water fluxes. An inter-model comparison suggests distinct patterns in isotope flux composition associated with disparities in the relative contributions of partitioned fluxes. Our results show that conservative isotope tracers provide novel validation metrics for evaluation of land surface model performance across ecosystems at a continental scale. Broadly, this compilation of datasets - combined with both empirical and process-based isotope modeling - suggests NEON stable isotope observations can improve general understanding of land-surface processes influencing the water and carbon cycles from regional to global scales.

Linnia R Hawkins

and 9 more