Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to biases in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling biases. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of six-year (2010–2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three datasets combined. Combining the datasets results in more precise flux estimates for sub-continental regions relative to any of the datasets alone. Combining the datasets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior-flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.35–0.50~ppm) in comparison to GOSAT (0.39–0.57~ppm), TCCON (0.52–0.63~ppm), or in situ and flask measurements (0.45–0.53~ppm) alone. These results suggest that surface-based and GOSAT measurements give complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve observational coverage. This stands in contrast with many earlier attempts to combine these datasets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints.

Meemong Lee

and 11 more

Changes in aerosol optical depth, both positive and negative, are observed across the globe during the 21rst Century. However, attribution of these changes to specific sources is largely uncertain as there are multiple contributing natural and anthropogenic sources that produce aerosols either directly or through secondary chemical reactions. Here we show that satellite-based changes in small-mode AOD between 2002 and 2019 observed in data from MISR can primarily be explained by changes, either directly or indirectly, in combustion emissions. We quantify combustion emissions using MOPITT total column CO observations and the adjoint of the GEOS-Chem global chemistry and transport model. The a priori fire emissions are taken from the Global Fire Emission Data base with small fires (GFED4s) but with fixed a priori for non-fire emissions. Aerosol precursor and direct emissions are updated by re-scaling them with the monthly ratio of the CO posterior to prior emissions. The correlation between modeled and observed AOD improves from a mean of 0.15 to 0.81 for the four industrial regions considered and from 0.52 to 0.75 for the four wildfire-dominant regions considered. Using these updated emissions in the GEOS-Chem global chemistry transport model, our results indicate that surface PM2.5 have declined across many regions of the globe during the 21rst century. For example, PM2.5 over China has declined by ~30% with smaller fractional declines in E. USA and Europe (from fossil emissions) and in S. America (from fires). These results highlight the importance of forest management and cleaner combustion sources in improving air-quality.

Nicholas C Parazoo

and 12 more

The ACT-America Earth Venture mission conducted five airborne campaigns across four seasons from 2016-2019, to study the transport and fluxes of Greenhouse gases across the eastern United States (US). Unprecedented spatial sampling of atmospheric tracers (CO2, CO, and COS) related to biospheric processes offers opportunities to improve our qualitative and quantitative understanding of seasonal and spatial patterns of biospheric carbon uptake. Here, we examine co-variation of boundary layer enhancements of CO2, CO, and COS across three diverse regions: the crop-dominated Midwest, evergreen-dominated South, and deciduous broadleaf-dominated Northeast. To understand the biogeochemical processes controlling these tracers, we compare the observed co-variation to simulated co-variation resulting from model- and satellite- constrained surface carbon fluxes. We found indication of a common terrestrial biogenic sink of CO2 and COS and secondary production of CO from biogenic sources in summer throughout the eastern US. Stomatal conductance likely drives fluxes through diffusion of CO2 and COS into leaves and emission of biogenic volatile organic compounds into the atmosphere. ACT-America airborne campaigns filled a critical sampling gap in the southern US, providing information about seasonal carbon uptake in southern temperate forests, and demanding a deeper investigation of underlying biological processes and climate sensitivities. Satellite- constrained carbon fluxes capture much of the observed seasonal and spatial variability, but underestimate the magnitude of net CO2 and COS depletion in the Southeast, indicating a stronger than expected net sink in late summer.