Brendan Byrne

and 11 more

Extreme climate events are becoming more frequent, with poorly understood implications for carbon sequestration by terrestrial ecosystems. A better understanding will critically depend on accurate and precise quantification of ecosystems responses to these events. Taking the 2019 US Midwest floods as a case study, we investigate current capabilities for tracking regional flux anomalies with “top-down” inversion analyses that assimilate atmospheric CO2 observations. For this analysis, we develop a regionally nested version of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution atmospheric transport (0.5° × 0.625°) over a North America domain. Relative to a 2018 baseline, we find US Midwest growing season net carbon uptake is reduced by 11-57 TgC (3-16%) for 2019 (inversion mean estimates across experiments). These estimates are found to be consistent with independent “bottom-up” estimates of carbon uptake based on vegetation remote sensing. We then investigate current limitations in tracking regional carbon emissions and removals by ecosystems using “top-down” methods. In a set of observing system simulation experiments, we show that the ability to recover regional carbon flux anomalies is still limited by observational coverage gaps for both in situ and satellite observations. Future space-based missions that allow for daily observational coverage across North America would largely mitigate these observational gaps, allowing for improved top-down estimates of ecosystem responses to extreme climate events.
Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to biases in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling biases. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of six-year (2010–2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three datasets combined. Combining the datasets results in more precise flux estimates for sub-continental regions relative to any of the datasets alone. Combining the datasets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior-flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.35–0.50~ppm) in comparison to GOSAT (0.39–0.57~ppm), TCCON (0.52–0.63~ppm), or in situ and flask measurements (0.45–0.53~ppm) alone. These results suggest that surface-based and GOSAT measurements give complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve observational coverage. This stands in contrast with many earlier attempts to combine these datasets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints.

Yuan You

and 7 more

During the global COVID-19 pandemic, anthropogenic emissions of air pollutants and greenhouse gases, especially traffic emissions in urban areas, have declined significantly. Long-term measurements of trace gas concentrations in urban areas can be used to quantify the impact of emission reductions on local air quality. Open-path Fourier transform infrared (OP-FTIR) spectroscopy is a non-intrusive technique that can be used to simultaneously measure multiple atmospheric trace gases in the boundary layer. This study investigates the reduction of surface CO, CO2 , and CH4 mole fractions during the lockdown in downtown Toronto, Canada, which is the fourth largest city in North America. The mean daily CO mole fraction anomaly (ΔCO) for the period from March 14 to May 18, 2020 declined by 46 ± 16% compared to the period before lockdown from January 13 to March 13, 2020. The mean daily ΔCO during the lockdown also declined relative to the same period in previous years: by 50 ± 20% relative to 2019 and by 44 ± 25% relative to 2018. Changes in the diurnal variations of CO, CO2 and CH4 during the lockdown are also investigated and compared to 2019 and 2018. Both CO and CO2 show early morning maxima on weekdays corresponding to rush hour. The change of the amplitude of the diurnal variation in CO during the lockdown is significant, compared to the period before lockdown. The differences in the diurnal variation in CO during the same two periods in 2019 and 2018 are not significant. Ratios of CO/CO2 anomalies show seasonal variations, which are also likely due to seasonal changes of emissions from local sources. These results show that the COVID-19 lockdown in Toronto modified surface mole fractions, diurnal variations, and ratios of air pollutants monitored by OP-FTIR. In addition, measured CO mole fractions are compared with simulated CO mole fractions by WRF-STILT to assess the relationship between atmospheric measurements and urban emissions from Toronto.

Meemong Lee

and 11 more

Changes in aerosol optical depth, both positive and negative, are observed across the globe during the 21rst Century. However, attribution of these changes to specific sources is largely uncertain as there are multiple contributing natural and anthropogenic sources that produce aerosols either directly or through secondary chemical reactions. Here we show that satellite-based changes in small-mode AOD between 2002 and 2019 observed in data from MISR can primarily be explained by changes, either directly or indirectly, in combustion emissions. We quantify combustion emissions using MOPITT total column CO observations and the adjoint of the GEOS-Chem global chemistry and transport model. The a priori fire emissions are taken from the Global Fire Emission Data base with small fires (GFED4s) but with fixed a priori for non-fire emissions. Aerosol precursor and direct emissions are updated by re-scaling them with the monthly ratio of the CO posterior to prior emissions. The correlation between modeled and observed AOD improves from a mean of 0.15 to 0.81 for the four industrial regions considered and from 0.52 to 0.75 for the four wildfire-dominant regions considered. Using these updated emissions in the GEOS-Chem global chemistry transport model, our results indicate that surface PM2.5 have declined across many regions of the globe during the 21rst century. For example, PM2.5 over China has declined by ~30% with smaller fractional declines in E. USA and Europe (from fossil emissions) and in S. America (from fires). These results highlight the importance of forest management and cleaner combustion sources in improving air-quality.