Alexandra Rivera

and 2 more

Acetone is an abundant volatile organic compound with important influence on ozone and atmospheric self-cleaning processes. The budget of acetone is influenced by various sources and sinks. Direct sources include anthropogenic, terrestrial vegetation, oceanic, and biomass burning emissions, while chemistry forms acetone from other compounds. Sinks include deposition onto the land and ocean surfaces, as well as chemical loss. The GISS Earth System Model, ModelE, is capable of simulating a variety of Earth system interactions. Previously, acetone had a very simplistic representation in the ModelE chemical scheme. This study assesses a greatly improved acetone tracer scheme, in which acetone's sources, sinks and atmospheric transport are now tracked in 3 dimensions. Extensive research was conducted to assess how well past literature supported the new global acetone budget. Anthropogenic, vegetation, biomass burning, and deposition schemes fit well with previous studies. While their net fluxes were well-supported, source and sink terms for chemistry and the ocean were overestimated and underestimated, respectively. In iterations of the chemistry scheme, it was found that the production of acetone from hydrocarbon oxidation is a strong leverage to the overall chemical source. Spatial distributions reveal that ocean uptake of acetone dominates northern latitudes, while production is mainly in mid-southern latitudes. Ocean surface conditions influence ocean-acetone interactions and will be considered when modifying the ocean scheme in future work. The seasonality of acetone-related processes was also studied in conjunction with field measurements around the world. These comparisons show promising results, but have shortcomings at urban locations, since the model's resolution is too coarse to capture high-emission areas. Overall, an analysis of the acetone budget aids the development of the tracer in the GISS ModelE, a crucial step to parameterizing the role of acetone in the atmosphere.

Guang Zeng

and 20 more

We quantify the impacts of halogenated ozone-depleting substances (ODSs), methane, N2O, CO2, and short-lived ozone precursors on total and partial ozone column changes between 1850 and 2014 using CMIP6 Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) simulations. We find that whilst substantial ODS-induced ozone loss dominates the stratospheric ozone changes since the 1970s, the increases in short-lived ozone precursors and methane lead to increases in tropospheric ozone since the 1950s that make increasingly important contributions to total column ozone (TCO) changes. Our results show that methane impacts stratospheric ozone changes through its reaction with atomic chlorine leading to ozone increases, but this impact will decrease with declining ODSs. The N2O increases mainly impact ozone through NOx-induced ozone destruction in the stratosphere, having an overall small negative impact on TCO. CO2 increases lead to increased global stratospheric ozone due to stratospheric cooling. However, importantly CO2 increases cause TCO to decrease in the tropics. Large interannual variability obscures the responses of stratospheric ozone to N2O and CO2 changes. Substantial inter-model differences originate in the models’ representations of ODS-induced ozone depletion. We find that, although the tropospheric ozone trend is driven by the increase in its precursors, the stratospheric changes significantly impact the upper tropospheric ozone trend through modified stratospheric circulation and stratospheric ozone depletion. The speed-up of stratospheric overturning (i.e. decreasing age of air) is driven mainly by ODS and CO2; increases. Changes in methane and ozone precursors also modulate the cross-tropopause ozone flux.

Wenying Su

and 15 more

Biases in aerosol optical depths (AOD) and land surface albedos in the AeroCom models are manifested in the top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) fluxes. Biases in the SW fluxes from AeroCom models are quantitatively related to biases in AOD and land surface albedo by using their radiative kernels. Over ocean, AOD contributes about 25% to the 60°S-60°N mean SW flux bias for the multi-model mean (MMM) result. Over land, AOD and land surface albedo contribute about 40% and 30%, respectively, to the 60°S-60°N mean SW flux bias for the MMM result. Furthermore, the spatial patterns of the SW flux biases derived from the radiative kernels are very similar to those between models and CERES observation, with the correlation coefficient of 0.6 over ocean and 0.76 over land for MMM using data of 2010. Satellite data used in this evaluation are derived independently from each other, consistencies in their bias patterns when compared with model simulations suggest that these patterns are robust. This highlights the importance of evaluating related variables in a synergistic manner to provide an unambiguous assessment of the models, as results from single parameter assessments are often confounded by measurement uncertainty. We also compare the AOD trend from three models with the observation-based counterpart. These models reproduce all notable trends in AOD (i.e. decreasing trend over eastern United States and increasing trend over India) except the decreasing trend over eastern China and the adjacent oceanic regions due to limitations in the emission dataset.