Motoharu Nowada

and 10 more

The terrestrial magnetosphere is perpetually exposed to, and significantly deformed by the Interplanetary Magnetic Field (IMF) in the solar wind. This deformation is typically detected at discrete locations by space- and ground-based observations. Earth’s aurora, on the other hand, is a globally distributed phenomenon that may be used to elucidate magnetospheric deformations caused by IMF variations, as well as plasma supply from the deformed magnetotail to the high-latitude atmosphere. We report the utilization of an auroral form known as the transpolar arc (TPA) to diagnose the plasma dynamics of the globally deformed magnetosphere. Nine TPAs examined in this study have two types of a newly identified morphology, which are designated as “J”- and “L”-shaped TPAs from their shapes, and are shown to have antisymmetric morphologies in the Northern and Southern Hemispheres, depending on the IMF polarity. The TPA-associated ionospheric current profiles suggest that electric currents flowing along the magnetic field lines (Field-Aligned Currents: FACs), connecting the magnetotail and the ionosphere, may be related to the “J”- and “L”-shaped TPA formations. The FACs can be generated by velocity shear between fast plasma flows associated with nightside magnetic reconnection and slower background magnetotail plasma flows. Complex large-scale TPA FAC structures, previously unravelled by an Magnetohydrodynamic (MHD) simulation, cannot be elucidated by our observations. However, our interpretation of TPA features in a global context facilitates the usage of TPA as a diagnostic tool to effectively remote-sense globally deformed terrestrial and planetary magnetospheric processes in response to the IMF and solar wind plasma conditions.

Motoharu Nowada

and 10 more

Since we discovered the newly morphological transpolar arc (TPA), whose nightside end got distorted toward pre- or post-midnight, identified as “nightside distorted TPAs”, their fundamental characteristics have been revealed based on investigations of the space-borne auroral imager data and corresponding solar wind conditions. Nightside distorted TPAs had two types; “J”- and “L”-shaped TPAs, and their locations of appearance (dawn or duskside of the polar cap) were governed by the polarity of the By component of the Interplanetary Magnetic Field (IMF). Furthermore, we found that the nightside distorted TPAs have antisymmetric morphologies in the Northern and Southern hemispheres, also depending on the IMF-By orientation. In this presentation, we show that that the electric currents flowing aligned to the magnetic field lines which connect between the magnetotail and the ionosphere, that is, Field-aligned currents (FACs) play an essential role in the formations of the “J”- and “L”-shaped TPAs. They are induced by significant plasma flow velocity difference (plasma flow shear) between the fast plasma flows associated with nightside magnetic reconnection and slower background plasma flows in the magnetotail. The current vortex structures with the counterclockwise rotation are also clearly seen in the ionospheric current vectors derived from fluctuations of the geomagnetic field measured at the ground observatories beneath and in close proximity of the growth regions of the nightside distorted TPA. This result suggests that the FACs were flowing out of the ionosphere toward the magnetotail (upward FACs) near the TPA. Furthermore, based on the geomagnetic field variations and the SuperDARN HF radar data, we obtained evidence in which the locations of magnetotail magnetic reconnection, which persisted even during northward IMF-Bz intervals, that is, the TPA durations, retreated further down tail as the TPA grew to the dayside. Taking into account these observational results, we finally show a model to illustrate the nightside distorted TPA (particularly, “L”-shaped TPA) formation.

Stephen E. Milan

and 7 more