Harriet C.P. Lau

and 6 more

Studies of glacial isostatic adjustment (GIA) often use paleoshorelines and present-day deformation to constrain the viscosity of the mantle and the thickness of the elastic lithosphere. However, different studies focused on similar locations have resulted in different estimates of these physical properties. We argue that these different estimates infer apparent viscosities and apparent lithospheric elastic thicknesses, dependent on the timescale of deformation. We use recently derived relationships between these frequency dependent apparent quantities and the underlying thermodynamic conditions to produce predictions of mantle viscosity and lithospheric thickness across a broad spectrum of geophysical timescales for two Antarctic locations (Amundsen Sea and the Antarctic Peninsula). Our predictions are constrained by input from seismic tomography, require the self-consistent consideration of elastic, viscous, and transient rheological behavior and also include non-linear steady state viscosity, which have been determined by several laboratories. We demonstrate that these frequency dependent predictions of lithospheric thickness and apparent viscosity display a significant range and that they align to first order with estimates from GIA studies on different timescales. We suggest that observational studies could move towards a framework of determining the frequency dependence of apparent quantities – rather than single, frequency independent values of viscosity – to gain deeper insight into the rheological behavior of Earth.

Harriet C.P. Lau

and 6 more

Studies of glacial isostatic adjustment (GIA) often use paleoshorelines and present-day deformation to constrain the viscosity of the mantle and the thickness of the lithosphere. However, different studies focused on similar locations have resulted in different estimates of these physical properties even when considering the same model of viscoelastic deformation. We argue that these different estimates infer apparent viscosities and apparent lithospheric thicknesses, dependent on the timescale of deformation. We use recently derived relationships between these frequency dependent apparent quantities and the underlying thermodynamic conditions to produce predictions of mantle viscosity and lithospheric thickness across a broad spectrum of geophysical timescales for three locations (Western North America, Amundsen Sea, and the Antarctic Peninsula). Our predictions require the self-consistent consideration of elastic, viscous, and transient deformation and also include non-linear steady state deformation, which have been determined by several laboraties. We demonstrate that these frequency dependent predictions of apparent lithospheric thickness and viscosity display a significant range and that they align to first order with estimates from GIA studies on different timescales. Looking forward, we suggest that observationally based studies could move towards a framework of determining the frequency trend in apparent quantities – rather than single, frequency independent values of viscosity – to gain deeper insight into the rheological behavior of Earth materials.

Christopher Havlin

and 5 more

We present novel applications of yt, a tool originally designed for analysis of astrophysics datasets, to the geosciences. yt is a python-based platform for volumetric data, which enables semantically meaningful analysis and visualization. As part of a wider effort to bring yt to the geosciences, we present an initial use-case of yt applied to 3D seismic tomography models of the upper mantle from the IRIS Earth Model Collaboration. While the rendering capabilities of yt can in general be applied directly to 3D geoscience data, we add several graphical elements to the 3D rendering to aid in interpretation of volume renderings including latitude/longitude overlays and shapefile suport for plotting political and tectonic boundaries along the Earth’s surface. In this notebook, we focus on tomographic models of North America and the Western U.S., where high resolution models and rapidly varying seismic properties provide a rich dataset to explore systematically at a range of lengthscales. The notebook demonstrates loading and rendering of IRIS netcdf models, highlighting interesting 3D features of the Western U.S. upper mantle, and goes on to demonstrate how having direct control of the transfer functions used in creating the final volume rendering allows for a more systematic exploration of the role of the visualization method in our interpretation of 3D volumetric data. Finally, we conclude by demonstrating some of the semantically-aware capabilities of yt for analysis purposes, and demonstrate how these tools have cross-disciplinary functionality.