Robert E. Kopp

and 8 more

Tipping points have gained substantial traction in climate change discourses, both as representing the possibility of catastrophic and irreversible physical and societal impacts and as a way to set in motion positive, rapid and self-sustaining responses, such as the adoption of new technologies, practices, and behaviors. As such, tipping points appear ubiquitous in natural and social systems. Here, we critique 'tipping point' framings, specifically their insufficiency for describing the diverse dynamics of complex systems; their reductionist view of individuals, their agency and their aspirations; and their tendency to convey urgency without fostering a meaningful basis for climate action. We argue for clarifying the scientific discussion of the phenomena lumped under the 'tipping point' umbrella by using more specific language to capture relevant aspects (e.g., irreversibility, abruptness, self-amplification, potential surprise) and for the critical evaluation of whether, how and why the different framings can support accurate scientific understanding and effective climate risk management. Multiple social scientific frameworks suggest that deep uncertainty and perceived abstractness associated with many proposed Earth system 'tipping points' make them both unlikely to provoke effective action and not helpful for setting governance goals that must be sensitive to multiple constraints. The mental model of a 'tipping point' does not align with the multifaceted nature of social change; a broader focus on the dynamics of social transformation is more useful. Temperature-based benchmarks originating in a broad portfolio of concerns already provide a suitable guide for global mitigation policy targets and should not be confused with physical thresholds of the climate system.

D.J. Rasmussen

and 4 more

Joseph Lockwood

and 5 more

Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea-level rise (SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived from simulations of 26 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. We first explore correlations between SLR and TC activity by inference from two large‑scale factors known to modulate TC activity: potential intensity (PI) and vertical wind shear. Under the high emissions SSP5-8.5, SLR is strongly correlated with PI change (positively) and vertical wind shear change (negatively) over much of the western North Atlantic and North West Pacific. To explore the impact of the joint changes on flood hazard, we then conduct climatologyhydrodynamic modeling with New York City (NYC) as an example. Coastal flood hazard at NYC correlates strongly with global mean surface air temperature (GSAT), due to joint increases in both sea level and TC storm surges, the later driven by stronger and more slowly moving TCs. If positive correlations between SLR and TC changes are ignored in estimating flood hazard, the average projected change to the historical 100 year storm tide event is under-estimated by 0.09 m (7%) and the range across CMIP6 models is underestimated by 0.17 m (11 %). Our results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full distribution of GSAT changes will not accurately represent future flood hazard.

Jonathan L. Bamber

and 4 more

The ice sheets covering Antarctica and Greenland present the greatest uncertainty in, and largest potential contribution to, future sea level rise. The uncertainty arises from a paucity of suitable observations covering the full range of ice sheet behaviors, incomplete understanding of process influences, and limitations in defining key boundary conditions for the numerical models. To investigate the impact of these uncertainties on ice sheet projections we undertook a structured expert judgement study. Here, we interrogate the findings of that study to identify the dominant drivers of uncertainty in projections and their relative importance as a function of ice sheet and time. We find that for the 21st century, Greenland surface melting, in particular the role of surface albedo effects, and West Antarctic ice dynamics, specifically the role of ice shelf buttressing, dominate the uncertainty. The importance of these effects holds under both a high-end 5°C global warming scenario and another that limits global warming to 2°C. During the 22nd century the dominant drivers of uncertainty shift. Under the 5°C scenario, East Antarctic ice dynamics dominate the uncertainty in projections, driven by the possible role of ice flow instabilities. These dynamic effects only become dominant, however, for a temperature scenario above the Paris Agreement 2°C target and beyond 2100. Our findings identify key processes and factors that need to be addressed in future modeling studies in order to reduce uncertainties in ice sheet projections.

D.J. Rasmussen

and 2 more

Storm surge barriers, levees, and other coastal flood defense megaprojects are currently being proposed as strategies to protect several U.S. cities against coastal storms and rising sea levels. However, social conflict and other political factors add a layer of complexity that casts doubt on their status as practical climate adaptation options. The specific mechanisms for why some projects do not progress beyond initial planning stages has remained unclear. Here we study the outcome of two U.S. Army Corps of Engineer (USACE) storm surge barrier proposals to explore the political reasons why some coastal flood protection megaprojects break ground in the U.S., while others do not. Using original archive research, we conclude that storm surge barriers are politically challenging climate adaptation options because of 1) modern environmental laws that provide avenues for expression of oppositional views within the decision process and 2) the allure of alternative options that are more aesthetically pleasing and cheaper and faster to implement. To better allocate public resources and the expertise of the USACE, future flood protection megaprojects should first achieve broad support from the public, NGOs, and elected officials before beginning serious planning. This support could be achieved through new innovative designs that simultaneously address adverse environmental impacts and provide co-benefits (e.g., recreation). New designs should be studied to better understand the level of protection offered and associated reliability so that the USACE has confidence in their use.