Mark J. Engebretson

and 12 more

Dipolarizing flux bundles (DFBs) have been suggested to transport energy and momentum from regions of reconnection in the magnetotail to the high latitude ionosphere, where they can generate localized ionospheric currents that can produce large nighttime geomagnetic disturbances (GMDs). In this study we identified DFBs observed in the midnight sector from ~7 to ~10 RE by THEMIS A, D, and E during days in 2015-2017 whose northern hemisphere magnetic footpoints mapped to regions near Hudson Bay, Canada, and have compared them to GMDs observed by ground magnetometers. We found six days during which one or more of these DFBs coincided within ± 3 min with ≥ 6 nT/s GMDs observed by latitudinally closely spaced ground-based magnetometers located near those footpoints. Spherical elementary current systems (SECS) maps and all-sky imager data provided further characterization of two events, showing short-lived localized intense upward currents, auroral intensifications and/or streamers, and vortical perturbations of a westward electrojet. On all but one of these days the coincident DFB – GMD pairs occurred during intervals of high-speed solar wind streams but low values of SYM/H. In some events, in which the DFBs were observed closer to Earth and with lower Earthward velocities, the GMDs occurred slightly earlier than the DFBs, suggesting that braking had begun before the time of the DFB observation. This study is the first to connect spacecraft observations of DFBs in the magnetotail to intense (>6 nT/s) GMDs on the ground, and the results suggest DFBs could be an important driver of GICs.

Daniel R Weimer

and 4 more

A chain of magnetometers has been placed in Antartica for comparisons with magnetic field measurements taken in the northern hemisphere. The locations were chosen to be on magnetic field lines that connect to magnetometers on the western coast of Greenland, despite the difficulty of reaching and working at such remote locations. We report on some basic comparisons of the similarities and differences in the conjugate measurements. Our results presented here confirm that the conjugate sites do have very similar (symmetric) magnetic perturbations in a handful of cases, as expected. Sign reversals are required for two components in order to obtain this agreement, which is not commonly known. More frequently, a strong Y component of the Interplanetary Magnetic Field (IMF) breaks the symmetry, as well as the unequal conductivities in the opposite hemispheres, as shown in two examples. In one event the IMF Y component reversed signs twice within two hours, while the magnetometer chains were approaching local noon. This switch provided an opportunity to observe the effects at the conjugate locations and to measure time lags. It was found that the magnetic fields at the most poleward sites started to respond to the sudden IMF reversals 18 min after the IMF reaches the bow shock, a measure of the time it takes for the electromagnetic signal to travel to the magnetopause, and then along magnetic field lines to the polar ionospheres. An additional 9 to 14 min is required for the magnetic perturbations to complete their transition.

Xiaofei Shi

and 6 more

Energetic electron precipitation to the Earth’s atmosphere is a key process controlling radiation belt dynamics and magnetosphere-ionosphere coupling. One of the main drivers of precipitation is electron resonant scattering by whistler-mode waves. Low-altitude observations of such precipitation often reveal quasi-periodicity in the ultra-low-frequency (ULF) range associated with whistler-mode waves, causally linked to ULF-modulated equatorial electron flux and its anisotropy. Conjunctions between ground-based instruments and equatorial spacecraft show that low-altitude precipitation concurrent with equatorial whistler-mode waves also exhibits a spatial periodicity as a function of latitude over a large spatial region. Whether this spatial periodicity might also be due to magnetospheric ULF waves spatially modulating electron fluxes and whistler-mode chorus has not been previously addressed due to a lack of conjunctions between equatorial spacecraft, LEO spacecraft, and ground-based instruments. To examine this question, we combine ground-based and equatorial observations magnetically conjugate to observations of precipitation at the low-altitude, polar-orbiting CubeSats ELFIN-A and -B. As they sequentially cross the outer radiation belt with a temporal separation of minutes to tens of minutes, they can easily reveal the spatial quasi-periodicity of electron precipitation. Our combined datasets confirm that ULF waves may modulate whistler-mode wave generation within a large MLT and $L$-shell domain in the equatorial magnetosphere, and thus lead to significant aggregate energetic electron precipitation exhibiting both temporal and spatial periodicity. Our results suggest that the coupling between ULF and whistler-mode waves is important for outer radiation belt dynamics.

Mark J. Engebretson

and 16 more

Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically-induced currents (GICs) have used data from the northern hemisphere. Here we present details of four large-amplitude MPE events (|DBx|> 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high latitude regions (65 - 80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL-PIP and BAS LPM. From 1 to 3 different isolated MPEs localized in corrected geomagnetic latitude were observed during 3 pre-midnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended post-midnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative IMF Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductivities in conjugate hemispheres clearly favored a current generator model over a voltage generator model for 3 of the 4 events; neither model provided a good fit for the pre-midnight event that occurred near vernal equinox.

Martin Owain Archer

and 8 more

Surface waves on Earth’s magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground-based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere-ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field-aligned currents, due to both the surface mode and its non-resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open-closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward field-aligned current perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving field-aligned current structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90º compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East-West ground magnetic field component. Overall, all ground-based signatures of the magnetopause surface mode are predicted to have the same frequency across L-shells, amplitudes that maximise near the magnetopause’s equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.

Mark J. Engebretson

and 12 more

Nearly all studies of impulsive magnetic perturbation events (MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study we investigated MPE occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL-PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL-PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS-LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed a) a seasonal dependence (larger in the winter hemisphere), and b) a dependence on the sign of the By component of the interplanetary magnetic field (IMF): MPEs were larger in the north (south) when IMF By was > 0 (< 0). A majority of events occurred nearly simultaneously (to within ± 3 min) independent of the sign of By as long as |By| ≤ 2 |Bz|. As has been found in earlier studies, IMF Bz was < 0 prior to most events. When IMF data from Geotail, Themis-B, and/or Themis C in the near-Earth solar wind were used to supplement the time-shifted OMNI IMF data, the consistency of these IMF orientations was improved.