Nathalie Voisin

and 6 more

Most hydropower utilities rely on flow forecasts to manage the water resources of their reservoir systems and to help marketers and schedulers make efficient use of power generating resources. Flow forecast providers and dam operators typically assess the value of flow forecasts by assessing the skill of the forecasts in a verification exercise. Although there are many flow forecasting approaches available—from physics-based approaches associated with statistical pre and post processors and data assimilation, to emerging machine-learning based approaches—there is little consensus on how to choose the best forecast product. Nor are there established methods for translating forecast skill—a summary statistic amalgamating multiple types of errors —to forecast value (benefits or avoided cost) as perceived by a marketer or scheduler. In this work we develop such an approach by combining a water resources management model with a power grid model. Flow forecasts are developed at 85 locations for a varying range of skills, from perfect, to persistent and in-between. Using reservoir and power grid simulations over the Western U.S., we propagate flow forecasts through the power grid model, mapping flow forecast skill to regional hydropower revenues, production costs and carbon emissions. We develop a deeper understanding of the influence of regional and seasonal differences in markets and hydrologic dynamics on forecast value. We discuss future research directions to integrate hydrologic forecasts into decision-making at the utility and wider system scale.

Nathalie Voisin

and 1 more

Tian Zhou

and 4 more

Hydropower is a low-carbon emission renewable energy source that provides competitive and flexible electricity generation and is essential to the evolving power grid in the context of decarbonization. Assessing hydropower availability in a changing climate is technically challenging because there is a lack of consensus in the modeling representation of key dynamics across scales and processes. The SECURE Water Act requires a periodic assessment of the impact of climate change on the United States federal hydropower. The uncertainties associated with the structure of the tools in the previous assessment was limited to an ensemble of climate models. We leverage the second assessment to evaluate the compounded impact of climate and reservoir-hydropower models’ structural uncertainties on monthly hydropower projections. While the second assessment relies on a mostly-statistical regression-based hydropower model, we introduce a mostly-conceptual reservoir operations-hydropower model. Using two different types of hydropower model allows us to provide the first hydropower assessment with uncertainty partitioning associated with both climate and hydropower models. We also update the second assessment, performed initially at an annual time scale, to a seasonal time scale. Results suggest that at least 50% of the uncertainties, both at annual and seasonal scales, are attributed to the climate models. The annual predictions are consistent between hydropower models which marginally contribute to the variability in annual projections. However, up to 50% of seasonal variability can be attributed to the choice of the hydropower model in regions over the western US where the reservoir storage is substantial. The analysis identifies regions where multi-model assessments are needed and presents a novel approach to partition uncertainties in hydropower projections. Another outcome includes an updated evaluation of CMIP5-based federal hydropower projection, at the monthly scale and with a larger ensemble, which can provide a baseline for understanding the upcoming 3rd assessment based on CMIP6 projections.

Joy Hill

and 4 more

The United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g. Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g. California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on the PNW for imported power to meet late summer demands.

Yifan Cheng

and 4 more

River temperature is projected to increase in the southeastern United States (SEUS) due to climate change, exacerbating the invasion of warm-water species and reducing suitable habitats for cold- and cool-water species. However, the response of river thermal regimes to climate change is also influenced by human activities, especially dam construction and operation. Large dams impound deep reservoirs, expand water surface area and prolong water residence time, modifying the interaction of surface meteorology with river systems. During warm seasons, surface energy fluxes can only heat the top layer (epilimnion) in deep reservoirs with bottom layer (hypolimnion) remaining cold. This vertical temperature gradient is called thermal stratification. Cold hypolimnetic releases from stratified reservoirs changes downstream thermal regimes that can expel indigenous warm-water species yet provide an ideal habitat for introduced cold-water species. For example, multiple species of trout (Family: Salmonidae) have been introduced to tailwaters downstream of multiple dams operated by the Tennessee Valley Authority, which has become a popular and lucrative recreational fishing location in the SEUS. Previous research has shown that reservoir thermal stratification will be retained under climate change, but stronger surface energy fluxes warm downstream river temperature, suggesting there will be a future decline in cold-water species habitat and a corresponding increase in local warm-water species habitat. In this study, we used a physically-based modeling method to simulate river temperatures, explicitly considering the impact of thermal stratification. The SEUS has a highly regulated river system and diverse freshwater fish species. We mapped the suitable habitats for selected cold-water and warm-water fish species by comparing the simulated river temperature against their physiological constraints. Model experiments were designed to quantify the impacts of dam operation by simulating river temperature for both regulated and unregulated scenarios. Potential ecological consequences under climate change were analyzed through projected changes in river thermal regimes, e.g., shrinking habitats for cold-water species and restoring local warm-water species.

Stuart Cohen

and 7 more

A growing literature emphasizes the importance of integrating climate change impacts into electricity system planning. Rising average temperatures can increase and shift electricity demand while reducing generator and transmission efficiency. Changes to water availability and quality can reduce the output of thermally cooled generators and hydropower. Electric power grids across the US and globally are undergoing transformational changes that present new opportunities and challenges to reliability assurance. However, electric utilities and system operators have limited internal capabilities to incorporate these effects into planning practices. This work addresses gaps in utility and system planner practices by integrating climate-water-electricity expertise from universities and U.S. Department of Energy National Laboratories with electricity system planners and stakeholders in the Western Electricity Coordinating Council (WECC). Using a highly collaborative approach, global climate model data, high-resolution hydrology models, and long-term electric sector capacity expansion tools are employed to analyze a range of climate outcomes for future electricity scenarios aligned with recent WECC planning studies. Doing so allows WECC to expand its climate-agnostic planning assessments to consider how future temperature and precipitation patterns could influence generation and transmission planning. We explore how changes to climate-water conditions can affect power plant investment and operation, system economics, and environmental impacts, providing an expanded perspective on interconnection-wide decision making under climate uncertainty.

Jim Yoon

and 10 more

The role of individual and collective human action is increasingly recognized as a prominent and arguably paramount determinant in shaping the behavior, trajectory, and vulnerability of multisector systems. This human influence operates at multiple scales: from short-term (hourly to daily) to long-term (annually to centennial) timescales, and from the local to the global, pushing systems towards either desirable or undesirable outcomes. However, the effort to represent human systems in multisector models has been fragmented across philosophical, methodological, and disciplinary lines. To cohere insights across diverse modeling approaches, we present a new typology for classifying how human actors are represented in the broad suite of coupled human-natural system models that are applied in MultiSector Dynamics (MSD) research. The typology conceptualizes a “sector” as a system-of-systems that includes a diverse group of human actors, defined across individual to collective social levels, involved in governing, provisioning, and utilizing products, goods, or services towards some human end. We trace the salient features of modeled representations of human systems by organizing the typology around three key questions: 1) Who are the actors in MSD systems? 2) What are their actions? 3) How and for what purpose are these actors and actions operationalized in a computational model? We use this typology to critically examine existing models and chart the frontier of human systems modeling for MSD research.

Yifan Cheng

and 3 more

Over 270 major dams have been constructed in the Southeastern United States (SEUS) during the past century, changing natural flow patterns and affecting stream temperatures. Projected increases in air temperature combined with changes in precipitation may result in water scarcity and affect maximum stream temperatures during the summer for some regions in the SEUS. Currently existing reservoirs mitigate water shortages during drought by releasing more water but reducing residence time, the ratio of reservoir volume to inflow. Regulating stream temperature in the summer can be done by either increasing residence time or releasing more water. In this study, we investigate the extent to which the current reservoir infrastructure can be used to mitigate the impacts of climate change under current reservoir regulations as well as the range of operating rules that could minimize climate change impacts on both streamflow and river temperature. We use the Variable Infiltration Capacity (VIC) hydrological model to simulate runoff, which is then used as input to a large-scale river routing-reservoir model (MOSART-WM) to simulate reservoir operations and produce regulated streamflow. VIC and MOSART-WM outputs are then used as input to a stream temperature model that accounts for thermal stratification in reservoirs (RBM-res). Climate change projections are based on two representative concentration pathways (RCPs) and multiple global climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We compare modeled changes with those from a model implementation that does not include any reservoirs and which therefore lacks any flow regulation (VIC->MOSART-RBM) to evaluate the resilience of current reservoir infrastructures. We also evaluate different reservoir operating rules (residence time versus low flow mitigation) to investigate the extent to which the current reservoir system can be used to mitigate the impacts of climate changes on both streamflow and stream temperature.