Alex English

and 3 more

We present a metric for detecting clouds in auroral all-sky images based on single-wavelength keograms made with a collocated meridian spectrograph. The coefficient of variation, the ratio of the sample standard deviation to the sample mean taken over viewing angle, is the metric for cloud detection. After calibrating and flat-field correcting keogram data, then excluding dark sky intervals, the effectiveness of the coefficient of variation as a detector is tested compared to true conditions as determined by Advanced Very High Resolution Radiometer (AVHRR) satellite imagery of cloud cover. The cloud mask, an index of cloud cover, is selected at the corresponding nearest time and location to the site of a meridian spectrograph at Poker Flat Research Range (PFRR). We use events that are completely cloud-free or completely cloudy according to AVHRR to compute the false alarm and missed detection statistics for the coefficient of variation of the greenline 557.7 nm emission and of the redline 630.0 nm emission. For training data of the years 2014 and 2016, we find a greenline threshold of 0.51 maximizes the percent of events correctly identified at 75%. When applied to testing data of the years 2015 and 2017, the 0.51 threshold yields an accuracy of 77%. There is a relatively shallow and wide minimum of mislabeled events for thresholds spanning about 0.2 to 0.8. For the same events, the minimum is narrower for the redline, spanning roughly 0.3-0.5, with a threshold of 0.46 maximizing detector accuracy at 78-79%.

Alex T Chartier

and 7 more

V Lynn Harvey

and 4 more

The polar vortices play a central role in vertically coupling the Sun-Earth system by facilitating the descent of reactive odd nitrogen (NOx = NO + NO2) produced in the atmosphere by energetic particle precipitation (EPP-NOx). Downward transport of EPP-NOx from the mesosphere-lower thermosphere (MLT) to the stratosphere inside the winter polar vortex is particularly impactful in the wake of prolonged sudden stratospheric warming events. This work is motivated by the fact that state-of-the-art global climate models severely underestimate this EPP-NOx transport in the Arctic. As a step toward understanding the transport pathways by which MLT air enters the top of the polar vortex, we explore the extent to which Lagrangian Coherent Structures (LCS) impact the geographic distribution of NO near the polar winter mesopause in the Whole Atmosphere Community Climate Model eXtended version with Data Assimilation Research Testbed (WACCMX+DART). We present planetary wave-driven enhanced NO descent near the polar winter mesopause during 14 case studies from the Arctic winters of 2005/2006 through 2018/2019. During all cases the model is in reasonable agreement with SABER temperatures and SOFIE and ACE-FTS NO. Results show consistent LCS formation at the top of the polar vortex during minor and major SSWs. LCSs act to confine air with elevated NO to high latitudes as it descends into the top of the polar vortex. Descent of NO tends to be enhanced in traveling planetary wave troughs. These results present a new conceptual model of transport in the polar winter mesosphere whereby regional-scale, long-lived LCSs, coincident with the troughs of planetary waves, act to sequester elevated NOx at high latitudes until the air descends to lower altitudes.