Ryan McGranaghan

and 4 more

Data science refers to the set of tools, technologies, and teams that alter the paradigm by which data are collected, managed and analyzed. Data science is, therefore, decidedly broader than ‘machine learning,’ and includes instead the full data lifecycle. Never has the need for effective data science innovation been greater than now when at every turn data-driven discovery is both burdened and invigorated by the growth of data volumes, varieties, veracities, and velocities. This growing scale of science requires dramatic shifts in collaborative research, requiring projects to climb the gradations of collaboration from unidisciplinary, to multi-, inter-, and transdisciplinary (Figure 1, [Hall et al., 2014; NRC, 2015]), and perhaps even to an entirely new level that defies any traditional boundary, or antidisciplinary (https://joi.ito.com/weblog/2014/10/02/antidisciplinar.html). We will discuss the cutting-edge efforts advancing collaborative research in Space Physics and Aeronomy, highlight progress, and synthesize the lessons to provide a vision for future innovation in data science for Heliophysics. We will specifically focus on three trail-blazing initiatives: 1) the NASA Frontier Development Laboratory; 2) the HelioAnalytics group at the Goddard Space Flight Center in cooperation with the NASA Jet Propulsion Laboratory’s Data Science Working Group; and 3) an International Space Sciences Institute project. References: Hall, K.L., Stipelman, B., Vogel, A.L., Huang, G., and Dathe, M. (2014). Enhancing the Ef- fectiveness of Team-based Research: A Dynamic Multi-level Systems Map of Integral Factors in Team Science. Presented at the Fifth Annual Science of Team Science Confer- ence, August, Austin, TX. NRC (National Research Council) (2015). Enhancing the Effectiveness of Team Science. Washington, DC: The National Academies Press. https://doi.org/10.17226/19007.

Spiridon Kasapis

and 7 more

The Solar Dynamics Observatory (SDO) is a solar mission in an inclined geosynchronous orbit. Since commissioning, images acquired by Atmospheric Imaging Assembly (AIA) instrument on-board the SDO have frequently displayed “spikes”, pixel regions yielding extreme number of digital counts. These are theorized to occur from energetic electron collisions with the instrument detector system. These spikes are regularly removed from AIA Level 1.0 images to produce clean and reliable data. A study of historical data has found over 100 trillion spikes in the past decade. This project correlates spike detection frequency with radiation environment parameters in order to generate an augmented data product from SDO. We conduct a correlation study between SDO/AIA data and radiation belt activity within the SDO’s orbit. By extracting radiation “spike” data from the SDO/AIA images, we produce a comprehensive data product which is correlated not only with geomagnetic parameters such as Kp, Ap and Sym-H but also with the electron and proton fluxes measured by the GOES-14 satellite. As a result, we find that AIA spikes are highly correlated with the GOES-14 electrons detected by the MAGED and EPEAD instruments at the equator (where the two satellites meet) with Spearman’s Correlation values of ρ=0.73 and ρ=0.53 respectively, while a weaker correlation of ρ=0.47 is shown with MAGPD protons for the two year period where both missions returned data uninterruptedly. This correlation proves that the SDO spike data can be proven useful for characterizing the Van Allen radiation belt, especially at areas where other satellites cannot.