Wei Lin

and 6 more

Most dioecious plants are trees. However, because of the difficulty in determining sex from vegetative morphology, previous investigations of the sex ratios of dioecious trees were limited to flowering individuals, leading to inadequate and potentially unreliable data on patterns of sex ratios and the underlying mechanisms driving their variation. Here, we applied sex-specific molecular markers to investigate the sex ratio of a fully mapped population of the dioecious tree Diospyros morrisiana (Ebenaceae) in a subtropical forest. We also investigated the sexual dimorphism of life-history traits and spatial association between male and female trees to determine potential processes shaping the sex ratio at different life stages. Molecular sexing revealed a female-biased population sex ratio for this D. morrisiana population, contrasting with the male-biased operational (i.e., flowering) sex ratio. The sex ratio of D. morrisiana shifted from female-biased to male-biased over older life stages. We found that reproduction had a larger impact on the growth of female trees, which may account for the ontogenetic shift in sex ratio. There was no evidence of spatial segregation of the sexes beyond a scale of 2 m. Through molecular sexing of all individuals across all life stages, our work revealed for the first time a shift from a female- to a male-biased sex ratio in a huge population of a dioecious tree species. To better understand variation in sex ratios and the underlying mechanisms in dioecious trees, the sex of non-flowering and juvenile individuals should be included in future studies.

Jing Sun

and 6 more

Diospyros (Ebenaceae) is a widely distributed genus of trees and shrubs native to tropical and subtropical regions, with numerous species valued for their fruits (persimmons), timber, and medicinal values. However, information regarding their plastomes and chloroplast evolution is scarce. The present study performed comparative genomic and evolutionary analyses on plastomes of 18 accepted Diospyros species, including three newly sequenced ones. Our study showed a highly conserved genomic structure across the species, with plastome size ranging from 157,321 bp (D. jinzaoshi) to 157,934 bp (D. deyangensis). These plastomes encoded 134–138 genes, including 89–91 protein-coding genes, 1–2 pseudogenes (Ψycf1 for all, Ψrps19 for a few), 37 tRNA genes, and 8 rRNA genes. Comparative analysis of Diospyros identified the intergenic regions (trnH-psbA, rps16-trnQ, trnT-psbD, petA-psbJ, trnL-trnF-ndhJ) as the mutational hotspots in these species. Phylogenomic analyses identified three main groups within the genus designated as the evergreen, deciduous, and island groups. The codon usage analysis identified 30 codons with relative synonymous codon usage (RSCU) values greater than 1 and 29 codons ending with A and U bases. A total of three codons (UUA, GCU, and AGA) with highest (RSCU) values were identified as the optimal codons. ENC-plot indicated the significant role of mutational pressure in shaping codon usage, while most protein-coding genes in Diospyros experienced relaxed purifying selection (Ka/Ks < 1). Additionally, the ndhG, rpoC1, and ycf3 genes showed positive selection (Ka/Ks > 1) in the island, deciduous, and both deciduous and evergreen species, respectively. Thus, the results provide a foundation for elaborating Diospyros’s genetic architecture and taxonomy, conserving genetic diversity and enriching genetic resources.